- 【深度学习】大模型GLM-4-9B Chat ,微调与部署(3) TensorRT-LLM、TensorRT量化加速、Triton部署
XD742971636
深度学习机器学习深度学习人工智能
文章目录获取TensorRT-LLM代码:构建docker镜像并安装TensorRT-LLM:运行docker镜像:安装依赖魔改下部分package代码:量化:构建图:全局参数插件配置常用配置参数测试推理是否可以代码推理CLI推理性能测试小结验证是否严重退化使用NVIDIATriton部署在线推理服务器代码弄下来编译镜像启动容器安装依赖量化构建trtengines图Triton模板说明实操发起Tr
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- 前端技术栈 —— HTML、CSS和JavaScirpt执行环境
CS-Polaris
前端技术栈前端htmlcss
以下内容由GLM回答生成,不保证正确性。前端技术栈——HTML、CSS和JavaScirpt执行环境JavaScript的执行环境HTML和CSS的执行环境HTML和CSS是否可以在其他环境中执行?总结JavaScript是一种解释型语言,但它也可以被编译。JavaScript的执行方式取决于具体的运行环境。在浏览器中,JavaScript是通过解释器逐行执行的,但在某些情况下(如使用工具如Bab
- Redhat 9.5 Offline Install Rke2 v1.33.2
文章目录1.版本信息2.节点信息3.系统准备4.配置互信5.安装ansible6.基础配置6.1添加hosts解析6.2文件描述符限制6.3关闭swap6.4安装软件包6.5加载模块6.6设置内核参数7.部署dns8.配置VIP高可用8.1安装nginx8.2安装keepalived9.RKE2集群部署9.1下载软件9.2分发软件9.3初始Master节点安装9.3.1安装rke2-server9
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 大语言模型(LLM)按架构分类
jerwey
语言模型分类人工智能
大语言模型(LLM)按架构分类的深度解析1.仅编码器架构(Encoder-Only)原理双向注意力机制:通过Transformer编码器同时捕捉上下文所有位置的依赖关系#伪代码示例:BERT的MLM任务masked_input="The[MASK]satonthemat"output=encoder(masked_input)#预测[MASK]="cat"预训练任务:掩码语言建模(MLM):随机遮
- 【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
言析数智
数据挖掘常见面试题数据挖掘人工智能面试题
题目描述打车的场景下,poi记录了建筑物的坐标:poi(pid,x,y),odr记录的是乘客上车点的坐标:odr(oid,x,y);希望对所有的poi,获得其周围的100m的odr:结果(pid,oid)打车场景下POI与ODR空间关联查询在打车场景中,我们经常需要将建筑物坐标(POI)与乘客上车点(ODR)进行空间关联分析。这个问题本质上是一个空间连接(SpatialJoin)问题,需要找到距离
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 嵌入模型 vs 大语言模型:语义理解能力的本质区别与应用场景
chenkangck50
AI大模型语言模型人工智能机器学习
嵌入模型vs大语言模型:语义理解能力的本质区别与应用场景(实战视角)一句话总结嵌入模型的“理解”是向量表示和相似性匹配,适合做召回;大语言模型的“理解”是上下文+逻辑+世界知识综合判断,适合做分析与生成。重点是可以结合prompt和本身具有的知识两类模型的本质区别能力项嵌入模型(如BGE、SBERT)大语言模型(如GPT、GLM、DeepSeek)输出形式向量(如768维)自然语言文本(如答案、解
- 9.5 6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力开源机器学习人工智能语言模型langchain
6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解初探多模态VisualGLM-6B1.多模态时代的挑战与突破在通用大模型向多模态演进的过程中,如何实现跨模态的语义对齐是核心挑战。VisualGLM-6B作为GLM家族首个开源多模态模型,通过创新的跨模态连接架构,在参数量仅6B级别下实现了媲美百亿级模型的图文理解能力。
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 《5G网络切片诊断技术:性能指标关联分析与故障溯源》
团结湖到了
笔记
1.研究背景与问题5G网络通过网络切片技术实现多业务场景(如eMBB、uRLLC、mMTC)的隔离与定制化服务。但切片间资源抢占、跨层协议异常(如NR-RAN与核心网接口故障)等问题,常导致切片性能劣化(如时延突增、吞吐量骤降)。传统网络诊断方法难以适应切片的动态拓扑与多维度性能指标(如用户面时延、控制面信令成功率),亟需构建面向切片的智能诊断体系,解决“指标异常-故障根源”的关联分析与快速溯源问
- 电商用户行为可视化大屏--大数据项目
一.项目目的1.深入了解服务:用户的浏览路径、购买频率、商品评价等数据,能够精准地刻画用户画像。了解用户的年龄、性别、地域等基本信息,以及他们的兴趣爱好、消费习惯等更深入的特征,从而为个性化的营销和服务提供依据。2.优化用户体验:通过分析用户在页面之间的跳转时间、购物车的使用情况等,找出可能存在的流程不畅或设计不合理的地方。3.提高运营效率:对商品销售数据、库存数据等进行关联分析,有助于合理安排库
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- PostgreSQL即学即用(第2版)pdf
weixin_30614587
数据库json运维
下载地址:网盘下载内容简介······本书将帮助你理解和使用PostgreSQL这一开源数据库系统。你不仅会学到版本9.2、9.3和9.4中的企业级特性,还会发现PostgreSQL不只是个数据库系统,也是一个出色的应用平台。本书通过示例展示了如何实现在其他数据库中难以或无法完成的任务。这一版内容覆盖了LATERAL查询、增强的JSON支持、物化视图和其他关键话题。作者简介······Regina
- 木马免杀 学习方案
浩策
信息收集学习网络安全安全系统安全web安全安全架构网络攻击模型
目录️1.Web页面源码分析用于信息收集的技术点技术点与技术栈2.敏感文件读取的信息收集分析前后分析️细化步骤与网络安全分析3.信息收集的前后关联与技术栈前后关联分析技术栈总结4.全局总结⚔️5.攻击技术链攻击链可视化️1.Web页面源码分析用于信息收集的技术点Web页面源码分析是红队渗透测试的初始步骤,通过检查HTML、JavaScript、CSS和其他资源,识别潜在漏洞、暴露的敏感信息、文件路
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- 大模型应用实战1——大模型基本开发知识及GLM4的原理与应用(用大模型做游戏npc)
爱学习的uu
人工智能算法深度学习python
大模型开发思路1.promptengineering注意明确输出格式,如以{"from":"","to":""}这种JSON格式输出。2.多轮互动产生原因:大模型会自己发散(幻觉)3.functionCalling产生原因:用户可以提问不同类型的事情,比如天气和季节解决方法:不要去给大模型设定好要做什么这里面,框架就要承担很重要的职责:1.根据用户注册的函数,在首次Prompt中生成所有Tool的
- Vulkan 学习笔记16—集成 ImGUI
程序员Xu
Vulkan学习学习笔记chrome
Vulkan集成ImGUI学习笔记一、目录与文件部署从官网获取IMGUI代码库,在项目extern目录下新建imgui目录,将相关文件复制进去,构建出如下目录结构:.├──build├──extern│├──glfw│├──glm│└──imgui│├──backends││├──imgui_impl_glfw.cpp││├──imgui_impl_glfw.h││├──imgui_impl_vu
- SHELL脚本(一)
ALLLEX89
linuxbash
目录前言一、Shell脚本语言的基本结构1、Shell脚本的用途:2、Shell脚本基本结构:3、创建Shell脚本过程4、脚本注释规范5、第一个脚本6、执行脚本7、脚本错误二、Shell脚本语言的变量用法详解1、变量2、变量类型3、Shell中变量命名法则4、变量定义和引用5、环境变量6、只读变量7、位置变量8、退出状态码变量9、展开命令行9.1展开命令执行顺序9.2防止扩展9.3加引号来防止扩
- 【AIGC半月报】AIGC大模型启元:2024.06(上)
LeeZhao@
AIGCAIGC人工智能AIAgent
AIGC大模型启元:2024.06(上)(1)ChatTTS(语音合成项目)(2)Mamba-2(大模型新架构Mamba升级)(3)GLM-49B(智谱开源LLM)(4)Seed-TTS(字节语音合成)(5)QWen2(阿里大模型)(6)VideoReTalking(数字人对口型)(7)StableDiffusion3Medium(文生图更新)(8)DreamMachine(LumaAI文生视频)
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 【打卡】基金金融问答
来两个炸鸡腿
金融AIGC
文章目录任务1初始大模型与Agent大模型介绍ChatGLMAgent介绍特点任务2ChatGLMAPI-Python同步调用异步调用正则表达式Agent具体任务请添加图片描述任务3数据库内容解析SQLAgent任务1初始大模型与Agent大模型介绍GLM是智谱AI推出的新一代基座大模型,相比上一代有着显著提升的性能,逼近GPT-4。GLM支持更长的上下文(128k),具备强大的多模态能力,并且推
- 从混沌到宝藏:数据治理、清洗与资产化的炼金术
鼓掌MVP
人工智能
当全球最大零售商沃尔玛将尿布与啤酒并排陈列时,其背后是TB级交易数据的深度清洗与关联分析。这一反直觉的决策最终提升销售额35%,揭示了脏数据中可能蕴藏的最大商业价值——前提是经过严格的治理与清洗流程。2021年,某国际车企因客户数据未脱敏泄露被GDPR重罚8.7亿欧元;2023年,医疗AI模型因训练数据偏见导致误诊率激增50%——这些触目惊心的案例印证了未经治理的数据不是资产,而是负债。本文将深入
- 在沉浸式翻译中使用SiliconCloud API:提升翻译体验
淮橘√
python
沉浸式翻译,作为广受好评的双语对照网页翻译插件,结合了硅基流动(SiliconFlow)的大语言模型,为用户提供了快速、准确的跨语言翻译服务。自2023年上线以来,这款AI双语对照网页翻译扩展已帮助超过100万用户跨越语言障碍。硅基流动的大模型优势硅基流动近期提供了GLM4、Qwen2、DeepSeekV2、Yi等系列大模型,这些模型在翻译速度和准确性上都有显著优势。以下是如何将这些模型应用于沉浸
- 【学习笔记】深入理解Java虚拟机学习笔记——第9章 类加载及执行子系统的案例与实战
不太可爱的叶某人
深入理解Java虚拟机学习笔记学习笔记学习笔记java
第9章类加载及执行子系统的案例与实战9.1概述程序能控制的主要是字节码生成与类加载器这两部分9.2案例分析9.2.1Tomcat:正统的类加载器架构Tomcat通过不同路径及不同类加载器来实现类使用时的共享与隔离9.2.2OSGi:灵活的类加载器架构通过将依赖类委派给相关类加载器来实现模块化(此时打破了双亲委派模型)BundleA引用了BundleB的公开Package时,由以上行为实现9.2.3
- 【环境搭建】win10搭建vulkan
.云哲.
环境搭建
1,准备需要下载三个包,分别是glm,glfw,vulkanglm,https://github.com/g-truc/glmglfw,https://www.glfw.org/download.htmlvulkan,https://vulkan.lunarg.com/sdk/home运行vulkan,安装sdkglm和glfw解压->vulkan目录的Third-Party。2,VS2015创建
- 安全大模型智驱网络和数据安全效能跃迁
芯盾时代
安全网络人工智能网络安全
从2023年ChatGPT开始,网络安全行业就一直尝试和AI大模型来结合,解决网络安全的痛点,例如告警多,专家少,新的APT攻击层出不穷,已有的基于规则的防护手段失灵,如何使用大模型的泛化能力来提升对未知威胁的检测能力,如何用大模型的推理能力、关联分析能力来自动化的分析安全事件,并对安全事件进行溯源,如何利用大模型的NLP能力自动化的生成安全报告等等,成了AI大模型和网络安全业务相结合的重点领域。
- 华为---OSPF多区域配置(二)
心为你而跳
#OSPF华为网络OSPF多区域
9.2OSPF多区域配置9.2.1原理概述在OSPF单区域中,每台路由器都需要收集其他所有路由器的链路状态信息,如果网络规模不断扩大,链路状态信息也会随之不断增多,这将使得单台路由器上链路状态数据库非常庞大,导致路由器负担加重,也不便于维护管理。为了解决上述问题,OSPF协议可以将整个自治系统划分为不同的区域(Area),就像一个国家的国土面积很大时,会把整个国家划分为不同的省份来管理一样。链路状
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发