- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- OpenCV高阶操作
富士达幸运星
opencv人工智能计算机视觉
在图像处理与计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、1.图片的上下,采样下采样(Downsampling)下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 解决AttributeError: module ‘PIL.Image‘ has no attribute ‘ANTIALIAS‘
前行居士
javascript开发语言ecmascriptpytorchpythonubuntu
报错如下:因为当前版本PIL==10.0.1经查询文档发现所以需将Image.ANTIALIAS改为Image.Resampling.LANCZOS问题解决
- Analysis of Negative Sampling Methods for Knowledge Graph Embedding
小蜗子
知识图谱负采样知识图谱embedding人工智能
摘要负采样是一种用于加速知识图嵌入学习和最大化嵌入模型在链接预测和实体解析等支持任务中的有效性的方法。负采样对于提高准确性、减少偏差、提高效率和改善代表性至关重要。本文仔细研究了在基准数据集Fb15k上,张量分解和平移嵌入模型的两种基本负采样技术增加每正负采样数量的后果。对于均匀抽样和伯努利抽样,值得注意的是,基于每阳性负的数量增加而显示性能变化的模式。我们的目标是确定不同的负采样参数对张量分解模
- Python 将一维数组或矩阵变为三维
勤奋的大熊猫
Python科学计算基础python
Python将一维数组或矩阵变为三维正文正文话不多说直接上代码:importnumpyasnpsampling_points=10001arr=np.linspace(0,2,sampling_points)arr_3D=arr.reshape(1,1,-1)print(arr_3D)"""result:[[[0.0000e+002.0000e-044.0000e-04...1.9996e+001
- Python 将二维数组或矩阵变为三维
勤奋的大熊猫
Python科学计算基础python矩阵
Python将二维数组或矩阵变为三维引言正文基础拓展引言之前,我们已经介绍过了Python将一维数组或矩阵变为三维。然而,很多时候,我们也需要对二维矩阵进行操作,这里特来介绍一下如何将二维矩阵扩展为三维。阅读这一篇前推荐优先阅读np.concatenate()函数。正文基础importnumpyasnpsampling_points=10001arr=np.array([[1,2],[3,4]])
- 长拖尾数据的采样方法
武小胖儿
数据分析机器学习算法人工智能数据处理
以下内容来自于ChatGPT长拖尾数据的采样方式:对于具有长拖尾(长尾)分布的数据,通常使用传统的随机抽样方法可能不太适用,因为这样的分布意味着有一些极端值(outliers)会对整体分布产生较大影响。为了更有效地对长拖尾分布的数据进行取样,可以考虑以下一些方法:截断抽样(TruncatedSampling):选择数据中的一个截断范围,只保留在这个范围内的数据。这样可以排除极端值对样本的影响。截断
- 【AIGC】Stable Diffusion的生成参数入门
AIGCExplore
AIGCAIGCstablediffusion
StableDiffusion的生成参数是用来控制图像生成过程的重要设置,下面是一些常见的生成参数及其详解1、采样器,关于采样器的选择参照作者的上一篇文章2、采样步数(SamplingSteps)是指在生成图像时模型执行的总步数,每一步都包含了一系列操作,例如在潜在空间中移动、噪声注入、反向传播等。采样步数决定了生成过程中的总计算量和时间,同时也会影响到生成图像的质量和多样性。较大的采样步数意味着
- vllm的SamplingParams参数
致Great
算法
vllm部署示例fromvllmimportLLM,SamplingParams#Sampleprompts.prompts=["Hello,mynameis","ThepresidentoftheUnitedStatesis","ThecapitalofFranceis","ThefutureofAIis",]#Createasamplingparamsobject.sampling_param
- 处理一下异常值
红老鼠
matlab
clearclccloseall%生成风速时程time_length=5*60;%5分钟,单位:秒sampling_rate=15;%采样频率,单位:Hztotal_samples=time_length*sampling_rate;%总采样点数%生成随机风速数据wind_speed=randn(1,total_samples);wind_speed(100)=6;wind_speed(300)=
- Mac版 stable diffusion点生成没反应(M2)
duan030
macosstablediffusion人工智能
报错信息:RuntimeError:"upsample_nearest2d_channels_last"notimplementedfor'Half'查阅资料后发现有两种方法:1.打开webui-macos-env.sh文件进行如下更改Change:exportCOMMANDLINE_ARGS="--skip-torch-cuda-test--upcast-sampling--no-half-va
- 计算机图形学三:光栅化-Rasterization
西电卢本伟
图形学图形学光栅化
文章目录什么是光栅化?像素和屏幕直线光栅化(LinearRasterization)DDA数值微分算法中点Bresenham算法三角形光栅化(TriangleRasterization)为什么是三角形?如何光栅化光栅化带来的锯齿/走样(Aliasing)如何抗锯齿/反走样?(Antialiasing)超采样反走样(SuperSamplingAnti-Aliasing,SSAA)多采样反走样(Mul
- 统计学 (番外 )
呼吸化为空气
1.研究方法入门总体均值μ样本均值x-bar抽样误差(samplingerror):μ-(x-bar)单盲双盲随机样本比便利样本更能够得出总体结论2.数据可视化频数频率直方图(hist)柱状图(bar)偏斜分布正态分布均匀分布多峰分布3.集中趋势modemedianmean4.差异性IQRoutliersvariancesigma贝塞尔校正正态分布
- 应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测
取名真难.
机器学习深度学习机器学习python神经网络keras人工智能
目录SMOTE:ANN:ANN(MLP)三种预测-CSDN博客KerasTuner:CNN应用KerasTuner寻找最佳HiddenLayers层数和神经元数量-CSDN博客数据:建模:SMOTESampling:KerasTuner:SMOTE:SMOTE(SyntheticMinorityOver-samplingTechnique)是一种用于处理不均衡数据集的采样方法。在不均衡数据集中,某
- PyTorch 2.2 中文官方教程(六)
绝不原创的飞龙
人工智能pytorch人工智能python
音频音频I/Opytorch.org/tutorials/beginner/audio_io_tutorial.html此教程已移至pytorch.org/audio/stable/tutorials/audio_io_tutorial.html3秒后将重定向。音频重采样原文:pytorch.org/tutorials/beginner/audio_resampling_tutorial.html
- stable-diffusion | v1-5-pruned.ckpt和v1-5-pruned-emaonly.ckpt的区别
ASKCOS
stablediffusion
https://github.com/runwayml/stable-diffusion?tab=readme-ov-file#reference-sampling-script对于1.5模型,其中可能包括四部分:标准模型、文本编码器、VAE模型、EMA模型。标准模型:生成图片的核心模块,潜空间中的前向扩散和反向扩散就是通过它做的,对应到图中左侧的U-Net。文本编码器:将文本提示词转换为数学向量
- Jaeger的客户端采样配置(Java版)
程序员欣宸
欢迎访问我的GitHubhttps://github.com/zq2599/blog_demos内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;关于采样(Sampling)采样很好理解:使用Jaeger时,未必需要将所有请求都上报到Jaeger,有时候只要抽取其中一部分观察即可,这就是按照一定策略进行采样;JaegerSDK是支持多种采样配置
- Convolutional Neural Networks CNN -- Explained
许喜远
机器学习——通俗易懂机器学习python神经网络
ConvolutionalNeuralNetworksCNN--Explained为什么要卷积神经网络?卷积神经网络如何工作?特征映射和多个通道池化基础大步前进和下采样Stridesanddown-sampling填充Padding为什么在卷积神经网络中使用池化?最后的图片全连接层在PyTorch中实现卷积神经网络加载数据集建立模型训练模型测试模型为什么要卷积神经网络?仅有几层的全连接网络只能做很
- 一文打通RLHF的来龙去脉
orangerfun
AI算法自然语言处理人工智能语言模型AIGCchatgpt强化学习RLHF
文章目录1.RLHF的发展历程2.强化学习2.1强化学习基本概念2.2强化学习分类2.3PolicyGradient2.3.1addabaseline2.3.2assignsuitablecredit2.4TRPO和PPO算法2.4.1on-policy2.4.2ImportantSampling2.4.3OffPolicy2.4.4TRPO和PPO算法2.4.5P
- python 交互式可视化库_Bokeh 0.9.0 发布 Python 交互式可视化库
weixin_39786706
python交互式可视化库
Bokeh0.9.0发布,此版本更新内容如下:*CallbackAction,serverlessinteractivityinstaticplots*Hoverinspectionalonglines*ClientsideLODdownsamplingforinteractivetools*FullUserguiderewrite*ReduceBokehJSboilerplateandswitc
- Stratified Sampling(分层采样)
ZJU_TEDA
图形学随机过程理论与应用
一、问题描述在一个正方形内采样点,假设正方形的面积为A,如果使用完全随机均匀采样,期望是?方差是?如果将正方形均匀分成N*N个网格,在每个网格中进行随机均匀采样,那么整体的期望和方差与之前的策略相比有什么变化?
- DS Wannabe之5-AM Project: DS 30day int prep day4
wendyponcho
MachineLearningDataScience算法学习笔记面试机器学习
Q1.Whatisupsamplinganddownsamplingwithexamples?Theclassificationdatasetwithskewedclassproportionsiscalledanimbalanceddataset.Classeswhichmakeupalargeproportionofthedatasetsarecalledmajorityclasses.Tho
- 《图机器学习》-GNN Augmentation and Training
白色的生活
图机器学习机器学习人工智能算法
GNNAugmentationandTraining一、GraphAugmentationforGNNs1、FeatureAugmentation2、Structureaugmentation3、NodeNeighborhoodSampling二、GNNTrainingPipeline1、Predictionheads2、SupervisedVSUnsupervised3、LossFunction
- 2019-04-04 SubsamplingScaleImageView初步使用(仅限使用)
兣甅
1.修改SubsamplingScaleImageView长图展示位置:①新增方法/**添加的代码,在{@link#checkReady()}中调用*/privatevoidsetNewDefaultScale(){intw1=getWidth();inth1=getHeight();intw2=sWidth;inth2=sHeight;//保证控件大小和显示的图片大小都大于0if(w1>0&&h
- 【论文翻译】Generation of Non-Deterministic Synthetic Face Datasets Guided by Identity Priors(21.12)
联系丝信
计算机视觉
文章目录读后感Abstract1Introduction1.1Ourcontributions2RelatedWorks2.1SyntheticImageGeneration2.2MatedSampleGeneration2.3LimitationsinState-of-the-art3PCA-FR-GuidedSampling4SyntheticMatedFace(SymFace)Dataset
- CAN和CAN FD通信采样点原理介绍及计算测量 AutoSAR
KwyxLibrary
算法网络人工智能AutoSAR
CAN(ControllerAreaNetwork)是一种常用于汽车和其他嵌入式系统中的串行通信协议。CANFD(FlexibleDataRate)是CAN的扩展版本,提供更高的数据传输速率和更大的数据帧长度。在AutoSAR(AUTomotiveOpenSystemARchitecture)中,CAN和CANFD是广泛应用的通信协议。通信采样点(SamplingPoint)是CAN和CANFD通
- 空洞卷积(扩张卷积dilated convolution)
NeroChang
图像分割空洞卷积图像分割
为什么用空洞卷积?普通的DeepCNN中普遍包含Up-sampling/poolinglayer,导致内部数据结构丢失;空间层级化信息丢失。小物体信息无法重建(假设有四个poolinglayer则任何小于2^4=16pixel的物体信息在理论上将无法重建和分割。)普通卷积过程如下:在这样显著缺陷问题的存在下,语义分割问题一直处在瓶颈期无法再明显提高精度,而dilatedconvolution的设计
- 蒙特卡洛模拟之逆变换法
亦旧sea
机器学习人工智能
蒙特卡洛模拟(MonteCarlosimulation)是一种使用随机数进行数值计算或决策分析的方法。在蒙特卡洛模拟中,通过生成大量随机样本,并对这些样本进行统计分析,来估计不确定性和风险。逆变换法(InverseTransformSampling)是蒙特卡洛模拟中常用的一种随机数生成方法。逆变换法的基本思想是,通过对一个已知概率分布函数的随机变量进行逆变换,得到符合另一个概率分布函数的随机变量。
- NRF52832 SAADC 多通道双缓冲的理解
思途积跬
单片机arm
为了实现ADC采样速度更快,可以使用双缓冲功能。先说下SAADC的工作模式一、SAADC的工作模式根据规格书SAADC共有4中工作模式:oneshot、Continuousmode、Oversampling、Scanmode。oneshot:一次触发,只运行单个通道,采样一次。Continousmode:持续触发模式,本质是通过timer定时去不断的oneshot。Oversampling:过采样
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地