- LLM模型 贪婪、温度、Top-k、核采样方式的区别---附代码与示例
繁星意未平
AIpython开发语言
LLM模型贪婪、温度、Top-k、核采样方式的区别—附代码与示例在自然语言生成任务中,不同的采样技术用于从语言模型的输出中选择下一个生成的单词或词语。这些技术包括贪婪采样、温度采样、Top-k采样和核(Nucleus)采样。它们在选择生成单词的过程中有不同的策略,本文将介绍这四种采样方式的区别。1.贪婪采样(GreedySampling)贪婪采样是一种直接选择最可能的下一个词的策略。具体步骤为:从
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- GPT源代码解析
大模型与Agent智能体
A2AMCPDeepSeekA2AMCPManusADK
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-GPT源代码解析我们可以稍微看一下,这是我们GPT的基于它的源代码产生的可视化的内容。这边是model,我们在谈这个sampling的时候,本身首先就是说它这个probabilitydistribution,会有很多的参数对它进行影响。例如temperature,如果你是hightemperature的话
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- vllm推理实践
try2find
java前端服务器
1.vllm推理demo实验fromvllmimportLLM,SamplingParams#定义生成参数sampling_params=SamplingParams(temperature=0.7,top_p=0.9,max_tokens=100,)#加载DeepSeek模型(以deepseek-llm-7b为例)#model_name="deepseek-ai/deepseek-llm-7b"
- 大模型中的temperature、topk、topn、repetition_penalty等参数原理
seetimee
大模型技术细节大模型
核心就在于采样策略,一图胜千言:上图中语言模型(languagemodel)的预测输出其实是字典中所有词的概率分布,而通常会选择生成其中概率最大的那个词。不过图中出现了一个采样策略(samplingstrategy),这意味着有时候我们可能并不想总是生成概率最大的那个词。设想一个人的行为如果总是严格遵守规律缺乏变化,容易让人觉得乏味;同样一个语言模型若总是按概率最大的生成词,那么就容易变成XX讲话
- AD7606过采样模式
零度随想
嵌入式硬件fpga开发
AD7606的过采样模式(OversamplingMode)是其重要特性之一,它可提升信噪比(SNR)、有效分辨率、降低系统噪声。✅一、什么是过采样(Oversampling)过采样是指ADC内部将每个通道采样多次,然后进行数字平均滤波,以减少随机噪声、提升信号质量。在AD7606中,过采样是由芯片内部硬件自动完成的:每次外部采样触发→芯片在内部进行多次转换→平均值输出对外仍只输出1个16位数据→
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- influxdb-comparisons IOT数据测试 使用记录
外环西路007号
tsdb物联网devops运维时序数据库
文章目录生成测试数据数据倒数influxdb数据导入influxdb后显示结果生成测试数据./bulk_data_gen-formatinflux-bulk-use-caseiot-seed100-sampling-interval10s-scale-var10-timestamp-start"2022-12-01T00:00:00+80:00"-timestamp-end"2023-01-03T
- 强化学习系列——PPO算法
lqjun0827
算法深度学习算法人工智能
强化学习系列——PPO算法PPO算法一、背景知识:策略梯度&Advantage二、引入重要性采样(ImportanceSampling)三、PPO-Clip目标函数推导✅四、总结公式(一图总览)参考文献PPO示例代码实现补充内容:重要性采样一、问题背景:我们想估计某个期望❗问题:二、引入重要性采样(ImportanceSampling)三、离散采样形式(蒙特卡洛估计)四、标准化的重要性采样五、在强
- 在signal 这个信号上加一个高斯噪声,噪声的水平可以调节,如何实现?
fK0pS
PYTHON
要在信号signal上添加可调节水平的高斯噪声,可以使用NumPy的random.normal函数生成高斯噪声。高斯噪声的水平可以通过标准差(std)参数来控制,标准差越大,噪声水平越高。以下是实现代码:importnumpyasnp#原始信号生成代码signal_duration_s=60#信号长度为1秒##changeunittosecondsampling_freq=1000#采样频率为10
- 【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction1.1.LearningdenoisingNNwithouttruthimages1.2.Discussionsonbli
- matlab产生单脉冲,一些有关雷达的程序 另外求有关单脉冲雷达信号产生的程序...
13709382269
matlab产生单脉冲
该楼层疑似违规已被系统折叠隐藏此楼查看此楼小女子路遇强悍的毕业设计来到贴吧求大神们出手相助感激不尽!!在此给出一点程序看可不可以帮助到大家线性调频信号的产生程序T=10e-6;%pulseduration10usB=30e6;%chirpfrequencymodulationbandwidth30MHzK=B/T;%chirpslopeFs=2*B;Ts=1/Fs;%samplingfrequen
- Python实战:随机森林
python游乐园
python随机森林机器学习
随机森林(RandomForest)是一种集成学习方法,由多个决策树组成,可用于分类和回归任务。基本原理随机森林的核心思想是构建多个决策树,并将这些决策树的结果进行综合。在构建每棵决策树时,采用了两种随机化策略:数据采样随机:使用自助采样法(BootstrapSampling)从原始训练数据集中有放回地抽取一定数量的样本,形成一个新的训练子集,用于训练每一棵决策树。这意味着每棵树的训练数据可能会有
- LLM 笔记:Speculative Decoding 投机采样
UQI-LIUWJ
机器学习笔记
1基本介绍投机采样(SpeculativeSampling)是一种并行预测多个可能输出,然后快速验证并采纳正确部分的加速策略在不牺牲输出质量的前提下,减少语言模型生成token所需的时间传统的语言模型生成是串行的必须生成一个,再输入到模型中,才能生成下一个投机采样的核心思想是用一个“小模型”提前生成多个候选token(投机结果),然后用“大模型”一起验证这批候选,并行加速。2举例比如已有promp
- 深度学习中的负采样
洪小帅
深度学习人工智能
深度学习中的负采样负采样(NegativeSampling)是一种在训练大型分类或概率模型(尤其是在输出类别很多时)中,用来加速训练、降低计算量的方法。它常用于:词向量训练(如Word2Vec)推荐系统(从大量候选项中学正例与负例)语言模型、对比学习、信息检索等场景本质概念在许多任务中,我们的模型要从上万个候选中预测正确类别。例如:给定单词“cat”,预测它上下文中出现的词(如Word2Vec的S
- vLLM - 控制生成过程中返回对数概率信息 logprobs的输出和解释
二分掌柜的
大模型vLLM
vLLM-控制生成过程中返回对数概率信息logprobs的输出和解释flyfish在vLLM的代码中,logprobs是一个控制生成过程中返回对数概率信息的参数。它决定了模型在生成每个token时,会返回多少个候选token的概率分布信息。以下是详细解释:logprobs参数的作用在SamplingParams中设置logprobs=k时:模型会返回每个生成token的对数概率(即模型选择该tok
- STM32的ADC模块中,**采样时机(Sampling Time)**和**转换时机(Conversion Time),获取数据的时机详解
happygrilclh
煤炭设备stm32嵌入式硬件单片机
在STM32的ADC模块中,**采样时机(SamplingTime)和转换时机(ConversionTime)**是ADC工作流程中的两个关键阶段,直接影响采样精度和系统实时性。以下是详细解析:1.采样时机(SamplingTime)(1)定义采样阶段:ADC对输入信号进行保持和稳定的过程。采样时间:由ADC_SMPRx寄存器配置,决定采样电容充电时间。(2)配置参数STM32F103的采样时间可
- 快速傅里叶变换python_FFT快速傅里叶变换的python实现过程解析
weixin_39771987
快速傅里叶变换python
FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。#encoding=utf-8importnumpyasnpimportpylabaspl#导入和matplotlib同时安装的作图库pylabsampling_rate=8000#采样频率8000Hzfft_size=512#采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有
- FastMCP - 快速、Pythonic风格的构建MCP server 和 client
编程乐园
#AI开源项目mcpFastMCPserverclient快速agenttool
文章目录一、关于FastMCP相关链接资源快速构建示例什么是MCP?为什么选择FastMCP?核心特性服务器客户端v2版本更新内容二、安装添加验证安装安装用于开发三、核心概念1、`FastMCP`服务器2、工具3、资源4、提示5、上下文6、图片7、MCP客户端7.1客户端方法7.2运输选项7.3LLMSampling7.4根访问四、高级功能1、代理服务器2、组成MCP服务器3、OpenAPI&Fa
- SpringAI系列 - MCP篇(一) - 什么是MCP
罗小爬EX
SpringAIspringaimcpllm
目录一、引言二、MCP核心架构三、MCP传输层(stdio/sse)四、MCP能力协商机制(CapabilityNegotiation)五、MCPClient相关能力(Roots/Sampling)六、MCPServer相关能力(Prompts/Resources/Tools)一、引言之前我们在接入大模型时,不同的大模型通常都有自己的交互协议,所以类似SpringAI框架都会为每一种大模型开发各自
- 常见的卷积神经网络列举
巷955
cnn人工智能神经网络
经典的卷积神经网络(CNN)在深度学习发展史上具有重要地位,以下是一些里程碑式的模型及其核心贡献:1.LeNet-5(1998)提出者:YannLeCun特点:首个成功应用于手写数字识别(MNIST)的CNN。结构:卷积层+池化层(当时用Subsampling)+全连接层。使用Tanh激活函数,后续被ReLU取代。意义:奠定了CNN的基本结构。2.AlexNet(2012)提出者:AlexKriz
- 60天Python训练 day13
only_only_you
python深度学习开发语言
不平衡标签的处理1.随机过采样#1.随机过采样fromimblearn.over_samplingimportRandomOverSamplerros=RandomOverSampler(random_state=42)#创建随机过采样对象X_train_ros,y_train_ros=ros.fit_resample(X_train,y_train)#对训练集进行随机过采样print("随机过采
- pcl 中的滤波与降采样
诺有缸的高飞鸟
3d视觉点云算法c++pcl点云降采样
目录pclfilter模块RandomSampleUniformSamplingVoxelGridStatisticalOutlierRemovalfilter应用参考完pclfilter模块Modulefilters:https://pointclouds.org/documentation/group__filters.htmlRandomSample、UniformSampling、Voxe
- 交叉验证 java_从R中的交叉验证(训练)数据绘制ROC曲线
极萨学院冷哲
交叉验证java
我想知道是否有一种方法可以根据使用caret包生成的SVM-RFE模型的交叉验证数据绘制平均ROC曲线.我的结果是:RecursivefeatureselectionOuterresamplingmethod:Cross-Validated(10fold,repeated5times)Resamplingperformanceoversubsetsize:VariablesROCSensSpecA
- 【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】
pen-ai
数据科学r语言python深度学习
Resampling(重采样方法)重采样方法是从训练数据中反复抽取样本,并在每个(重新)样本上重新调整模型,以获得关于拟合模型的附加信息的技术。两种主要的重采样方法Cross-Validation(CV)交叉验证:用于估计测试误差和选择调优参数Bootstrap:主要用于评估可变性,如标准误差和置信区间估计测试误差的策略goldstandard:理想但无法实现(黄金标准)使用大型指定测试集(通常不
- 在vllm中,使用llm.generate()返回的List[RequestOutput]里面有什么参数?如何获得回答的token表示?
m0_62488776
vllmpython大模型
在使用vllm的时候,需要对输出做一个token数量的统计,但是在一般的示例里面都是如下摸样:fromvllmimportLLM,SamplingParams#Sampleprompts.prompts=["Hello,mynameis","ThepresidentoftheUnitedStatesis","ThecapitalofFranceis","ThefutureofAIis",]#Cre
- Select2控件的多选
量变决定质变
————jQuery
Select2的多选控件添加一个属性multiple=”multiple”页面元素${s.name}JS代码$('#samplingOprator').select2({width:200+"px",placeholder:"点击输入框,可以多选"});
- 机器学习中的过采样和欠采样
魔云连洲
深度学习机器学习人工智能计算机视觉
文章目录机器学习中的过采样和欠采样过采样欠采样机器学习中的过采样和欠采样过采样机器学习中的过采样和欠采样是两种常见的数据处理技术,用于解决不平衡数据集的问题。过采样(Oversampling)是指增加少数类样本的数量,以使其与多数类样本数量相当。这样可以帮助模型更好地学习少数类的特征,提高分类器对少数类的预测性能。过采样的方法包括复制样本、生成合成样本等。复制样本:简单地复制少数类样本,使其数量增
- 文本生成与采样策略 (Text Generation & Sampling)
LIUDAN'S WORLD
深入理解Transformer学习transformer语言模型
我们已经学习了如何构建和训练一个基于TransformerDecoder-only的语言模型。模型训练的目标是学习预测给定前缀下下一个token的概率分布。但是,训练完成后,我们如何利用这个模型来生成全新的、连贯的文本呢?这就涉及到推理过程和采样策略。推理是模型投入实际使用、生成文本的过程;采样策略则是从模型预测的概率分布中选择下一个token的方法。不同的策略会对生成文本的质量、多样性和“创造力
- 什么是上采样和下采样
胡乱儿起个名
深度学习基础深度学习机器学习神经网络
卷积神经网络(CNN)中的**上采样(Upsampling)和下采样(Downsampling)**是调整特征图空间分辨率的关键操作,分别用于增大或减小特征图的尺寸。它们在图像分割、超分辨率、目标检测等任务中广泛应用。以下是详细解释和示例:1.下采样(Downsampling)目的:降低特征图的分辨率,减少计算量,同时扩大感受野,提取更高层次的语义特征。常见方法:池化(Pooling):最大池
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地