热图7:ggplot2/ComplexHeatmap做离散型热图

很久之前我们出过热图系列,一共有6篇文章,反响还是可以,但是最近发现很多新关注的小伙伴没有翻看的习惯,居然不知道,所以今天推文全部列出来。此外,这篇文章的内容是补充之前的不足,因为没有涉及到离散型热图的做法,这里我们以一篇Cell文章为引子,展示下ggplot2/ComplexHeatmap做离散型热图,这样热图系列就完善了。

我们不可能将所有文章出现的热图复现一遍,请从这短小的几篇介绍中发挥想象,深入学习,通过变化可以展示更多的图形。

示例数据及代码已上传群文件!
请关注我的公众号《KS科研分享与服务》

图片来源

image.png

(Reference:Peng Y R , et al. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. 2018. Cell)

构建数据

作图数据和之前gene表达量一样,只不过将数值换成了因子:

image.png

方法1:ggplot2

加载数据并转化为ggplot长数据:

setwd('F:/生物信息学/离散型热图')
A <- read.csv("gene_dis.csv", header = T)
library(tidyr)
dft <-gather(A, disease, value, 2:9)
dft

library(forcats)
dft$gene <- as.factor(dft$gene)
dft$gene <- fct_inorder(dft$gene)
library(ggplot2)

作图:

ggplot(data=dft,aes(x=disease,y=gene))+
  geom_tile(aes(fill=value),color="grey")+
  theme_minimal()+
  theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"),
        panel.grid = element_blank(),
        axis.ticks.y = element_blank(),
        axis.title = element_blank(),
        axis.text.x = element_text(angle=45,hjust=1, colour = 'black', size = 12),
        axis.text.y = element_text(colour = 'black', size = 12),
        plot.margin=unit(c(0.4,0.4,0.4,0.4),units=,"cm"))+
  scale_fill_manual(values = c('white','black'))+
  labs(fill="Disease\nassociation")
image.png

方法2:ComplexHeatmap

管它什么类型热图,只要是热图,ComplexHeatmap就能搞定。读入数据作图,效果和ggplot2一样。

library(ComplexHeatmap)
B <- read.csv("gene_dis.csv", header = T, row.names = 1)


Heatmap(B,
        cluster_rows = F,
        cluster_columns = F,
        show_column_names = T,
        show_row_names = T,
        row_names_side =  'left',
        column_title = NULL,
        heatmap_legend_param = list(
          title='Disease\nassociation'),
        col = c('white','black'),
        border = 'black',
        rect_gp = gpar(col = "grey", lwd = 1),
        row_names_gp = gpar(fontsize = 10),
        column_names_gp = gpar(fontsize = 10))
image.png

我们还可以为热图添加注释,黑白配上一点彩色,感觉还挺有艺术感。

disease <- c("disease1","disease2","disease3","disease4","disease5","disease6","disease7","disease8")
group <- c("Male_spc","Male_spc","Male_spc","Female_spc","Female_spc","Female_spc","MF","MF")
Group <- data.frame(disease, group)#创建数据框

top_anno=HeatmapAnnotation(df=Group,
                           border = T,
                           show_annotation_name = F,
                           col = list(group=c('Male_spc'='#006699',
                                              'Female_spc'='#993333',
                                              'MF'='#33CCCC')))

Heatmap(B,
        cluster_rows = F,
        cluster_columns = F,
        show_column_names = F,
        show_row_names = T,
        row_names_side =  'left',
        column_title = NULL,
        heatmap_legend_param = list(
          title='Disease\nassociation'),
        col = c('white','black'),
        border = 'black',
        rect_gp = gpar(col = "grey", lwd = 1),
        row_names_gp = gpar(fontsize = 10),
        column_names_gp = gpar(fontsize = 10),
        top_annotation = top_anno)
image.png

这就是热图得全部内容了,还是那句话,自己要学会探索学习,不能一味得依靠别人解决错误。通过一个小例子,也要学会拓展,才能创造!

觉得有用的请点个赞,转发,分享至看一看再走呗。

你可能感兴趣的:(热图7:ggplot2/ComplexHeatmap做离散型热图)