- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- linux sed命令
weifexie
Linuxlinux运维服务器sedawk
linuxsed命令作为三剑客的一员,也是到了不得不写写总结的时候了,按惯例,先给出出处,首当齐冲wikihttps://zh.wikipedia.org/wiki/Sedsed(意为流编辑器,源自英语“streameditor”的缩写)是一个使用简单紧凑的编程语言来解析和转换文本Unix实用程序。sed是最早支持正则表达式的工具之一,至今仍然用于文本处理,特别是用于替换命令。用于纯文本字符串操作
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 基于AI算法实现的情感倾向分析的方法
程序员奇奇
计算机毕设人工智能算法
完整代码:https://download.csdn.net/download/pythonyanyan/87430621背景目前,情感倾向分析的方法主要分为两类:一种是基于情感词典的方法;一种是基于机器学习的方法,如基于大规模语料库的机器学习。前者需要用到标注好的情感词典,英文的词典有很多,中文主要有知网整理的情感词典Hownet和台湾大学整理发布的NTUSD两个情感词典,还有哈工大信息检索研究
- 数据架构与机器学习:如何构建智能系统
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种使计算机程序在未被明确编程的情况下,通过经验的学习自动改善其行为的技术。机器学习的目标是使计算机能够自主地从数据中学习,以便在未来的问题中做出更好的决策。数据架构(DataArchitecture)是一种用于有效管理、存储和处理数据的系统结构和组件。数据架构涉及到数据的收集、存储、处理和分析,以及数据的存储和传输。数据架构是构建智能系统的
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- 使用 Python 爬虫抓取 Wikipedia 页面内容——完整实战教程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言jsonjava
引言随着互联网的普及和信息化时代的到来,获取知识变得异常方便。Wikipedia作为全球最大的开放式百科全书,几乎涵盖了所有领域的知识。每年都有数十亿次的访问量,成为全球获取信息的一个重要来源。对于数据分析、自然语言处理、学术研究等领域,Wikipedia页面内容往往是研究者和开发者的重要数据来源之一。本篇博客将带您通过Python爬虫,学习如何抓取Wikipedia页面中的内容,并处理提取的文本
- 机器学习入门指南:从 TensorFlow 到 PyTorch
6v6-博客
机器学习tensorflowpytorch
机器学习入门指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。本文将从基础概念入手,介绍机器学习的核心知识,并带你快速上手两大主流框架:TensorFlow和PyTorch。机器学习基础什么是机器学习?机器学习是一种通过数据训练模型,使计算机能够自动学习和改进的技术。它主要分
- 机器学习(Machine Learning)
七指琴魔御清绝
大数据学习
原文链接:http://blog.csdn.net/zhoubl668/article/details/42921187希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Ada
- YAGO是什么?
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱yago实体
YAGO是一个基于链接数据库的开放语义知识库,由德国马普研究所与巴黎电讯科技大学于2007年联合开发,基于CreativeCommonsAttribution协议。其主要特点是从Wikipedia、WordNet和GeoNames等来源提取事实,形成了一个包含丰富语义信息的知识库。YAGO的数据规模庞大,包含约5亿个实体和20亿条事实,这些事实可以在时间和空间上进行锚定。此外,YAGO还具有预定义
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- PyBroker: 使用Python进行机器学习驱动的算法交易指南
任铃冰Flourishing
PyBroker:使用Python进行机器学习驱动的算法交易指南pybrokerAlgorithmicTradinginPythonwithMachineLearning项目地址:https://gitcode.com/gh_mirrors/py/pybroker一、项目目录结构及介绍PyBroker项目遵循了清晰的组织结构来简化其源码管理和维护。以下是该仓库的主要目录及其简介:├──docs#文
- Word2Vec 模型 PyTorch 实现并复现论文中的数据集
Illusionna.
word2vecpytorch人工智能算法自然语言处理nlpmatplotlib
详细注解链接:https://www.orzzz.net/directory/codes/Word2Vec/index.html欢迎咨询!
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- 机器学习在地图制图学中的应用
地图模型炼丹师
机器学习人工智能
原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstractCSDN/2025/Machinelearningincartography.pdfatmain·keykeywu2048/CSDN·GitHub核心内容本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机器学习(尤其是深度学习)在制
- Unity AI 技术浅析(二)
爱研究的小牛
AIGC—游戏制作AIGC—虚拟现实unity人工智能游戏引擎AIGC机器学习深度学习
UnityAI是Unity引擎中集成的智能技术,旨在为游戏开发者、虚拟现实(VR)和增强现实(AR)应用开发者提供强大的AI工具和功能。UnityAI涵盖了从智能代理(Agents)、机器学习(MachineLearning)到自然语言处理(NLP)等多个领域。一、UnityAI的工作原理1.智能代理(Agents)UnityAI的核心之一是智能代理(Agents),这些代理可以模拟游戏中的非玩家
- Word2Vec向量化语句的计算原理
堕落年代
AIword2vec人工智能机器学习
一、Word2Vec的核心理念Word2Vec由Google团队于2013年提出,是一种通过无监督学习生成词向量的模型。其核心思想是“相似的词拥有相似的上下文”,通过上下文关系捕捉词汇的语义和语法特征。生成的向量具有低维(通常100-300维)、连续且稠密的特点,解决了传统One-Hot编码的高维稀疏和语义缺失问题。二、向量化的核心步骤(以Skip-Gram模型为例)示例句子假设句子为:“Theq
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- python读取word文档结构图_python根据文章标题内容自动生成摘分享的实例
weixin_39997664
如何用Python玩转TF-IDF之寻找相似文章并生成摘要应用1:关键词自动生成核心思想是对于某个文档中的某个词,计算其在这个文档中的标准化TF值,然后计算这个词在整个语料库中的标准化IDF值。在这里,标准化是说对原始的计算公式进行了一些变换以取得更好的衡量效果,并避免某些极端情况的出现。python从一个文件按文章标题把对应内容存为另外一问题如标题,例如有文件“A.txt”里面内容如上图,需按三
- 详解LLM 核心技能-大文本分块技术
大模型入门学习
人工智能大模型学习AI大模型ai
在构建LLM相关应用程序的背景下,分块是将大段文本分解成较小片段的过程。这是一项必不可少的技术,有助于优化我们使用LLM嵌入内容后从[矢量数据库]获取的内容的相关性。在这篇博文中,我们将探讨它是否以及如何有助于提高LLM相关应用程序的效率和准确性。分块的主要原因是为了确保我们嵌入的内容尽可能少地包含噪音,同时仍然具有语义相关性。例如,在语义搜索中,我们会对文档语料库进行索引,每个文档都包含有关特定
- [水]与grok聊Java
啾啾大学习
水java开发语言
摘要:AI时代,二本毕业一般工资一般履历的java程序员要怎么做才能不被淘汰呢?3步之内必有解药?AI带来的问题让AI解决?转行么?先水一篇吧(我知道可能不如去学习,但是我要是学习好我会这个样子,可恶,加油)目录1、AI带来的问题职业危机2、AI带来的机遇2.1、职业发展的帮助职业发展预测可能的职业1.AI工程师(AIEngineer)2.机器学习工程师(MachineLearningEngine
- LLaMA(Meta开源的AI模型)与Ollama(本地运行和管理大模型的工具)简介(注意这俩虽然名字相似但没有直接联系)
Dontla
人工智能大模型LLMllama开源人工智能
文章目录LLaMA**Llama系列模型发展**1.**Llama1(2023年2月)**2.**Llama2(2023年7月)**3.**Llama3(2024年4月)****关键特性**-**开放性**:非商业许可下发布模型权重,促进研究社区发展[⁴](https://zh.wikipedia.org/zh-hans/LLaMA)。-**性能优势**:在NLP基准测试中表现优异,例如代码生成任
- Word2Vec的使用,一些思考,含示例——包括使用预训练Word2Vec模型和自训练Word2Vec模型
热爱生活的猴子
NLP_自然语言处理word2vec人工智能自然语言处理
词嵌入模型(WordEmbeddings)——Word2Vec简介:Word2Vec是由Google团队提出的一种词嵌入方法,通过神经网络模型将词语映射到一个低维的连续向量空间中。你可以直接通过它训练生成词向量,也就是一个新的Word2Vec,也可以使用预训练好的词向量,也就是那里直接用。它有两种模型结构:CBOW(ContinuousBagofWords)和Skip-Gram。CBOW(连续词袋
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe