python内置类型性能分析(二)

timeit 模块

timeit模块可以用来测试一小段python代码的执行速度

class timeit.Timeit(stmt = 'pass', setup = 'pass',timer = < timer function>)

Timer是测量小段代码执行速度的类
stmt参数是要测试的代码语句(statment)
setup参数是运行代码时需要的设置
timer参数是一个定时器函数,与平台有关。
timeit.Timer.timeit(number = 1000000)
Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码 的平均耗时,一个float类型的秒数。

list的操作测试
def test1():
     l = []
     for i  in range(1000):
         l = l + [i]
def test2():
     l = []
     for i in range(1000):
          l.append(i)
def test3():
     l = [ i for i in range(1000)]
def test4():
     l = list(range(1000))
t1 = Timer("test1()", "from __main__ import test1")
print("concat ",t1.timeit(number=1000), "seconds")
t2 = Timer("test2()", "from __main__ import test2")
print("append ",t2.timeit(number=1000), "seconds")
t3 = Timer("test3()", "from __main__ import test3")
print("comprehension ",t3.timeit(number=1000), "seconds")
t4 = Timer("test4()", "from __main__ import test4")
print("list range ",t4.timeit(number=1000), "seconds")

时间对比
pop操作测试
x = list(range(2000000))
pop_zero = Timer("x.pop(0)","from __main__ import x")
print("pop_zero ",pop_zero.timeit(number=1000), "seconds")
x = list(range(2000000))
pop_end = Timer("x.pop()","from __main__ import x")
print("pop_end ",pop_end.timeit(number=1000), "seconds")
pop操作测试
测试pop操作:从结果可以看出,pop最后一个元素的效率远远高于pop第一个元素
list内置操作的时间复杂度

dict内置操作的时间复杂度
数据结构

数据结构是数据对象,以及存在于该对象的实例和组成实例的数据元素之间的各种联系。这些联系可以通过定义相关的函数给出。

数据

是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。

算法与数据结构的区别

数据结构只是静态的描述数据元素之间的关系。高效的程序需要在数据结构的基础上设计和选择算法。

程序 = 数据结构 + 算法

总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体。

抽象数据类型(Abstract Data Type)

抽象数据类型的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使得它们相互独立。

最常见的数据类型有五种:

  • 插入
  • 删除
  • 修改
  • 查找
  • 排序

你可能感兴趣的:(python内置类型性能分析(二))