NER常见的解决方案汇总(deep learning)

文章目录

  • 任务介绍
  • 相关论文
    • BiLSTM-CRF
    • IDCNN-CRF
    • BERT-CRF
    • ner-mrc
    • BERT-CASCADE-CRF
    • FLAT
    • global-pointer
    • efficient-global-pointer
    • bert-biaffine
  • 评测结果 to be continued

任务介绍

NER (Named Entity Recognition)即命名实体识别。顾名思义就是识别文本当中的实体信息。举个例子,

输入:张三现在在武汉市江夏区金融港

输出:B-PER,E-PER,O, O,O,B-CITY,I-CITY,E-CITY,B-DISTRICT,I-DISTRICT,E-DISTRICT,B-LOCATION,I-LOCATION,-E-LOCATION

其中,“张三”以PER,“武汉市”以CITY,“江夏区”以DISTRICT,“金融港”以LOCATION为实体类别分别挑了出来。

NER的过程,就是预测出其序列标注的过程。

备注:
BIOES标注方式中分别代表什么意思:
B,即Begin,表示开始
I,即Intermediate,表示中间
E,即End,表示结尾
S,即Single,表示单个字符
O,即Other,表示其他,用于标记无关字符

相关论文

目前的解决方案及对应的paper如下,其中bilstm-crf和bert-crf成为ner领域常用的baseline。

BiLSTM-CRF

paper:Neural Architectures for Named Entity Recognition

IDCNN-CRF

paper:Fast and Accurate Entity Recognition with Iterated Dilated Convolutions

BERT-CRF

ner-mrc

paper:A Unified MRC Framework for Named Entity Recognition

BERT-CASCADE-CRF

paper:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction

FLAT

paper:FLAT: Chinese NER Using Flat-Lattice Transformer

global-pointer

paper:Global Pointer: Novel Efficient Span-based Approach for Named Entity Recognition

efficient-global-pointer

blog:Efficient GlobalPointer:少点参数,多点效果

bert-biaffine

paper:Named Entity Recognition as Dependency Parsing

评测结果 to be continued

你可能感兴趣的:(nlp,深度学习,人工智能,自然语言处理)