1、objc_msgSend满流程查找切入点
1.1在经过objc_msgSend流程分析发现,
开启缓存查找流程CacheLookup 主要是找imp或者执行objc_msgSend_uncached
会传入如下参数
// calls imp or objc_msgSend_uncached
CacheLookup NORMAL, _objc_msgSend, __objc_msgSend_uncached
CacheLookup 具体实现,截取部分代码,和部分对应的流程图,详细可看这里
macro CacheLookup Mode, Function, MissLabelDynamic, MissLabelConstant
...代码省略...
1: ldp p17, p9, [x13], #-BUCKET_SIZE // {imp, sel} = *bucket--
cmp p9, p1 // if (sel != _cmd) {
b.ne 3f // scan more
// } else {
2: CacheHit \Mode // hit: call or return imp
// }
3: cbz p9, \MissLabelDynamic // if (sel == 0) goto Miss;
cmp p13, p10 // } while (bucket >= buckets)
b.hs 1b
...代码省略...
执行cbz p9, \MissLabelDynamic,判断if (sel == 0) goto Miss,直接返回MissLabelDynamic,其对应的传入参数:__objc_msgSend_uncached汇编函数
接下来在objc-msg-arm64.s文件中查找__objc_msgSend_uncached的汇编实现,其中的核心是MethodTableLookup(即查询方法列表),其源码如下:
STATIC_ENTRY __objc_msgLookup_uncached
UNWIND __objc_msgLookup_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band p15 is the class to search
MethodTableLookup
ret
END_ENTRY __objc_msgLookup_uncached
继续查看MethodTableLookup汇编实现
.macro MethodTableLookup
SAVE_REGS MSGSEND
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
// receiver and selector already in x0 and x1
mov x2, x16
mov x3, #3
bl _lookUpImpOrForward
// IMP in x0
mov x17, x0
RESTORE_REGS MSGSEND
mov x17, x0在汇编里面 x0是第一个寄存器,同样也是返回值的存储位置,所以可以发现bl _lookUpImpOrForward就是我们IMP要查找的地方,_lookUpImpOrForward对应的我们查找lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)方法;
2、lookUpImpOrForward 实现源码分析
我们使用_lookUpImpOrForward搜索,没有发现汇编的实现代码,继而我们查找lookUpImpOrForward去这个函数,在objc-runtime-new.mm里
extern IMP lookUpImpOrForward(id obj, SEL, Class cls, int behavior);
备注:lookUpImpOrForward我们要的目标就是为了找到找到当前IMP的返回值
NEVER_INLINE
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil; //初始化IMP
Class curClass;
runtimeLock.assertUnlocked();
//判断是否进行一些初始化处理
if (slowpath(!cls->isInitialized())) {
// The first message sent to a class is often +new or +alloc, or +self
// which goes through objc_opt_* or various optimized entry points.
//
// However, the class isn't realized/initialized yet at this point,
// and the optimized entry points fall down through objc_msgSend,
// which ends up here.
//
// We really want to avoid caching these, as it can cause IMP caches
// to be made with a single entry forever.
//
// Note that this check is racy as several threads might try to
// message a given class for the first time at the same time,
// in which case we might cache anyway.
behavior |= LOOKUP_NOCACHE;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
// We don't want people to be able to craft a binary blob that looks like
// a class but really isn't one and do a CFI attack.
//
// To make these harder we want to make sure this is a class that was
// either built into the binary or legitimately registered through
// objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
///判断当前的的class是否注册到当前的缓存表里面去
checkIsKnownClass(cls);
///对当前rw ro进行处理
cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE);
// runtimeLock may have been dropped but is now locked again
runtimeLock.assertLocked();
curClass = cls;
// The code used to lookup the class's cache again right after
// we take the lock but for the vast majority of the cases
// evidence shows this is a miss most of the time, hence a time loss.
//
// The only codepath calling into this without having performed some
// kind of cache lookup is class_getInstanceMethod().
for (unsigned attempts = unreasonableClassCount();;) {
if (curClass->cache.isConstantOptimizedCache(/* strict */true)) {
#if CONFIG_USE_PREOPT_CACHES
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
curClass = curClass->cache.preoptFallbackClass();
#endif
} else {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
// 父类 快速 -> 慢速 ->
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
if (fastpath((behavior & LOOKUP_NOCACHE) == 0)) {
#if CONFIG_USE_PREOPT_CACHES
while (cls->cache.isConstantOptimizedCache(/* strict */true)) {
cls = cls->cache.preoptFallbackClass();
}
#endif
log_and_fill_cache(cls, imp, sel, inst, curClass);
}
done_unlock:
runtimeLock.unlock();
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
备注:
2.1、slowpath(!cls->isInitialized())判断是否进行一些初始化处理
2.2、checkIsKnownClass(cls)判断当前的的class是否注册到当前的缓存表allocatedClasses里面去了,下面是调用源码
static void
checkIsKnownClass(Class cls)
{
if (slowpath(!isKnownClass(cls))) {
_objc_fatal("Attempt to use unknown class %p.", cls);
}
}
static bool
isKnownClass(Class cls)
{
if (fastpath(objc::dataSegmentsRanges.contains(cls->data()->witness, (uintptr_t)cls))) {
return true;
}
auto &set = objc::allocatedClasses.get();
return set.find(cls) != set.end() || dataSegmentsContain(cls);
}
2.3、 cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE),如果类没有实现,则实现给定的类,如果还没有初始化,则先初始化;
inst:是cls的一个实例或一个子类,如果不知道则为nil;
cls:要初始化或者实现的类;
behavior & LOOKUP_INITIALIZE:YES来初始化类,为NO来跳过初始化
static Class
realizeAndInitializeIfNeeded_locked(id inst, Class cls, bool initialize)
{
runtimeLock.assertLocked();
if (slowpath(!cls->isRealized())) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
}
if (slowpath(initialize && !cls->isInitialized())) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
}
return cls;
}
realizeClassMaybeSwiftAndLeaveLocked(Class cls, mutex_t& lock)
{
return realizeClassMaybeSwiftMaybeRelock(cls, lock, true);
}
realizeClassMaybeSwiftMaybeRelock(Class cls, mutex_t& lock, bool leaveLocked)
{
lock.assertLocked();
if (!cls->isSwiftStable_ButAllowLegacyForNow()) {
//处理非Swift类的初始化执行如下:
realizeClassWithoutSwift(cls, nil);
if (!leaveLocked) lock.unlock();
} else {
//处理Swift类的初始化执行如下:
lock.unlock();
cls = realizeSwiftClass(cls);
ASSERT(cls->isRealized()); // callback must have provoked realization
if (leaveLocked) lock.lock();
}
return cls;
}
realizeClassWithoutSwift对类cls进行首次初始化,分配类cls读写数据,不执行任何swift端初始化。最终返回类的实际类结构。
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
runtimeLock.assertLocked();
class_rw_t *rw;
Class supercls;
Class metacls;
if (!cls) return nil;
if (cls->isRealized()) {
validateAlreadyRealizedClass(cls);
return cls;
}
ASSERT(cls == remapClass(cls));
// fixme verify class is not in an un-dlopened part of the shared cache?
auto ro = (const class_ro_t *)cls->data();
auto isMeta = ro->flags & RO_META;
if (ro->flags & RO_FUTURE) {
// 未知的类,提前已经分配了Rw数据。
rw = cls->data();
ro = cls->data()->ro();
ASSERT(!isMeta);
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
// 正常的类。分配可写的类数据。.
rw = objc::zalloc();
rw->set_ro(ro);
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
cls->setData(rw);
}
....
代码省略
...
return cls;
}
2.4 for (unsigned attempts = unreasonableClassCount();;)二分查找流程代码查看分析
for (unsigned attempts = unreasonableClassCount();;) {
//判断是否有共享缓存,为什么还要判断在共享缓存里面找一遍呢?我们在执行getMethodNoSuper_nolock之前,前面做了很多ro,rw的的操作,可能在某一时刻,已经将方法写入到缓存里面了,所以做多一次判断
if (curClass->cache.isConstantOptimizedCache(/* strict */true)) {
#if CONFIG_USE_PREOPT_CACHES
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
curClass = curClass->cache.preoptFallbackClass();
#endif
} else {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
}
getMethodNoSuper_nolock
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
search_method_list_inline
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->isExpectedSize();
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
if (auto *m = findMethodInUnsortedMethodList(sel, mlist))
return m;
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name() == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
findMethodInSortedMethodList
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
if (list->isSmallList()) {
if (CONFIG_SHARED_CACHE_RELATIVE_DIRECT_SELECTORS && objc::inSharedCache((uintptr_t)list)) {
return findMethodInSortedMethodList(key, list, [](method_t &m) { return m.getSmallNameAsSEL(); });
} else {
return findMethodInSortedMethodList(key, list, [](method_t &m) { return m.getSmallNameAsSELRef(); });
}
} else {
return findMethodInSortedMethodList(key, list, [](method_t &m) { return m.big().name; });
}
}
findMethodInSortedMethodList
findMethodInSortedMethodList(SEL key, const method_list_t *list, const getNameFunc &getName)
{
ASSERT(list);
auto first = list->begin();
auto base = first;
decltype(first) probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
//分析
//假定count = 8 ,进行右移1操作
//1000 - 0100
//8 - 1 = 7 >> -> 0011 3 >> 1 == 1
//0 + 4 = 4
//5 - 8
// 6- 7
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)getName(probe);
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
//分类和主类有相同的方法,优先调用分类的方法
while (probe > first && keyValue == (uintptr_t)getName((probe - 1))) {
probe--;
}
return &*probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
2.5二分查找流程结束后 获取到imp,之后进行 goto done方法调用,在调用log_and_fill_cache方法进行一个方法缓存填充,也就是说记录一个方法的调用,如果有记录的话,就会来进行方法的缓存填充。这样以来就不用每次都进行二分查找的操作,下次查找时直接走快速查找流程,具体代码如下:
tatic void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
if (slowpath(objcMsgLogEnabled && implementer)) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
cls->cache.insert(sel, imp, receiver);
}
2.6二分查找流程结束后如果没有获取到imp,则会进行父类的方法查找流程(slowpath((curClass = curClass->getSuperclass()) == nil)),最后会进行父类快速查找和慢速度流程,如果最终找不到,系统会进行消息动态决议和消息转发,这个具体后面章节在做分析