- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- C语言学习:指针
wsy0903@@@
Linux编程嵌入式学习日记c语言学习开发语言
1.指针指针本质上就是内存地址。inta=10;//定义一个整型变量int*p=&a;//定义一个指针变量,指向a的地址在这个例子中:a是一个普通的整型变量,值为10&a获取变量a的内存地址p是一个指针变量,存储了a的地址*p可以访问a中存储的值2.指针的定义语法指针的定义遵循以下格式:基类型*指针变量名;这里的基类型决定了指针指向的数据类型。例如:int*p;//指向整型的指针char*p;//
- Linux 权限体系详解:、777、755、644、600、chmod、chown、chgrp 和 umask;SUID、SGID 和 Sticky Bit;ACL (访问控制列表) 是什么?
小胡说技书
手册/开发图谱运维linux运维服务器
文章目录1.引言1.1为什么学习Linux权限?1.2本文目标2.Linux权限基础概念2.1权限模型2.2权限类型2.3权限表示法2.3.1字母表示法2.3.2数字表示法2.3.3字母与数字表示法对比2.3.4案例:字母与数字的权限切换3.常见权限分配方法对比表格3.1使用`chmod`分配权限3.2使用`chown`和`chgrp`修改拥有者和用户组3.3使用`umask`设置默认权限4.高级
- Vue3初学之商品的增,删,改功能
fmdpenny
Web前后端技术javascriptvue.js开发语言
用一个商品的后台管理进行增,删,改的实现。案例进行学习:新增商品编辑删除取消确定import{ref}from'vue';import{ElMessageBox}from'element-plus';constgoodsList=ref([{id:1,name:'商品1',price:100,stock:50},{id:2,name:'商品2',price:200,stock:30}]);cons
- C# 通用缓存类开发指南 —— 缓存管理的奇幻之旅
墨瑾轩
一起学学C#【一】c#缓存
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣C#通用缓存类开发指南——缓存管理的奇幻之旅引言嘿,小伙伴们!今天我们要一起探索如何在C#中构建一个简单而强大的缓存系统。想象一下,当你访问一个网站时,那些常用的数据总是能瞬间加载出来,这就是缓存的魅力所在。那么,如何在自己的项目中实现这样一个功能呢?让我们一
- Gradio学习之旅(0)——初识Gradio以及后续目录总览
AI_Y.
Gradio学习之旅学习pythonchatgpt
在本系列文中,我们将会从零介绍Gradio以及其中的一些属性,创作本系列的初衷是在国内很难查询到和Gradio相关的教程文档一类,本人在开发学习过程中导致遇到了许多问题。所以决定写一系列关于介绍Gradio的文章。由于是第一次在CSDN上创作,所以有什么好的建议都可以提出来,我会努力改进的!让我们在AI学习的道路上加油吧!!!文章目录前言一、Gradio是什么?二、让我们来实现Helloworld
- MATLAB符号函数绘制各种函数图像,ezplot()函数 ezplot3()函数
Python数据分析与机器学习
可视化函数图像matlab画图matlab开发语言信息可视化
我们学习常遇见的函数种类有显函数,隐函数,参数方程三种,对于隐函数绘制图像比较麻烦,给大家介绍一种简单实用的一中画函数的方法。函数介绍二维曲线ezplot()函数ezplot()函数用于绘制显函数,隐函数,参数方程二维图像,函数格式ezplot(f)直接绘制图像ezplot(f,[min,max])指定函数x的值域范围三维曲线ezplot3()函数ezplot3()函数用于绘制显函数,隐函数,参数
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 大型语言模型高效预训练策略的比较研究
二进制独立开发
非纯粹GenAI深度思索GenAI与Python语言模型深度学习人工智能自然语言处理python开发语言机器学习
文章目录摘要1.引言2.背景与挑战2.1LLM中的预训练2.2扩展LLM的挑战3.高效预训练策略3.1增量训练3.1.1理论基础3.1.2实际实现3.1.3实验结果3.2混合优化3.2.1理论基础3.2.2实际实现3.2.3实验结果3.3其他新兴技术3.3.1知识蒸馏3.3.2稀疏训练3.3.3数据增强3.3.4迁移学习4.比较分析4.1性能指标4.2增量训练vs.混合优化4.2.1模型精度4.2
- npm和webpack学习
fechild
npmwebpack学习
npmnpmnpminstallxxxnpminstallxxx--savenpminstallxxx--save-dev安装在node_modules不在package.json安装在node_modules,在package.json的dependencies,生产环境打包时,会出现在依赖包里。安装在node_modules,在package.json的devDependencies,生产环境
- UE学习日志#8 GAS--ASC源码简要分析5 GameplayEffects: Primary outward facing API for other systems P2
学游戏开发的
UE学习日志学习游戏引擎
注:1.这个分类是按照源码里的注释分类的2.本篇是通读并给出一些注释形式的,并不涉及结构性的分析3.看之前要对UE的GAS系统的定义有初步了解4.因为都是接口函数,有些没细看的研究那一部分的时候会细看8OnPredictiveGameplayCueCatchupCall预测性添加的GC,移除标签并尝试InvokeGC事件ByTag/**Calledforpredictivelyaddedgamep
- 学习记录:OpenMV 摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。
DIY机器人工房
openmv学习笔记学习opencvpython
代码解释:整体功能:此代码是使用OpenMV摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。首先,对摄像头进行初始化,包括重置、设置像素格式和帧大小,并等待设置生效。然后创建一个时间对象用于计算帧率。最后在一个无限循环中不断采集图像并打印出每秒采集的帧数。#此作品遵循MIT许可证授权。#版权所有(c)2013-2023OpenMVLLC。保留所有权利。#h
- PX4源码学习二--PX4环境搭建
znr1995
px4ubuntu
Ubuntu16.04环境搭建:预环境处理:(把用户添加到用户组"dialout":重新登录一回使其生效)sudousermod-a-Gdialout$USER#ubuntu自带端口管理会影响这个sudoapt-getremovemodemmanager依赖环境安装:sudoadd-apt-repositoryppa:george-edison55/cmake-3.x-ysudoapt-getup
- AI编程助手ScriptEcho:革新你的编程学习之旅
前端
在当今数字时代,编程技能已成为一项越来越重要的技能,无论是想成为专业的软件工程师,还是想提升自身竞争力,学习编程都至关重要。然而,编程学习之路并非一帆风顺,陡峭的学习曲线和大量的实践项目常常让初学者望而却步。许多人卡在繁琐的配置和基础代码搭建上,难以将精力集中在核心业务逻辑的学习和项目实践中。为了解决这一问题,越来越多的人开始寻找更高效的学习工具,而AI写代码工具ScriptEcho正是其中之一,
- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- Presto 时间、日期及计算相关日期
三生暮雨渡瀟瀟
prestobigdatapresto
由于工作中在数据迁移,大数据平台数据查询引擎使用Presto,和传统的数据库时间函数有区别,整理一版,供大家参考,一起学习,有错误欢迎指正。1、查询当前日期selectcurrent_date;2、查询当前时间selectcurrent_timestamp;_col0---------------------------------------2022-01-0220:45:58.551Asia/
- SwiftUI 2.0实现动态粘性页脚动画指南
一曲歌长安
本文还有配套的精品资源,点击获取简介:在SwiftUI2.0中创建类似Medium.com的动态粘性页脚,涉及视图构建、环境值跟踪、自定义组件设计、动画实现以及响应式布局,以增强用户体验并提升应用程序的互动性。开发者将学习到如何通过滚动位置的变化来控制页脚的透明度和尺寸,并通过动画使交互更为流畅自然。1.SwiftUI核心概念理解SwiftUI是苹果公司推出的一套声明式UI框架,它使得开发者可以使
- 机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
promptllm人工智能
基础算法常见面试篇1.1过拟合和欠拟合常见面试篇一、过拟合和欠拟合是什么?二、过拟合/高方差(overfiting/highvariance)篇2.1过拟合是什么及检验方法?2.2导致过拟合的原因是什么?2.3过拟合的解决方法是什么?三、欠拟合/高偏差(underfiting/highbias)篇3.1欠拟合是什么及检验方法?3.2导致欠拟合的原因是什么?3.3过拟合的解决方法是什么?1.2Bat
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- Redis实战-初识Redis
啥都想学的又啥都不会的研究生
redis数据库缓存
初识Redis1、Redis简介2、Redis数据结构简介3、Redis命令3.1字符串3.2列表3.3集合3.4散列3.5有序集合3.6发布与订阅3.7其他命令3.7.1排序3.7.2过期时间如有侵权,请联系~如有错误,也欢迎批评指正~本篇文章大部分是来自学习《Redis实战》的笔记1、Redis简介Redis是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的
- 深度学习环境配置指南!(Windows、Mac、Ubuntu全讲解)
Charmve
#AI学习指导:从入门到进阶软件安装环境配置计算机视觉实战文档详细开放源码cudalinuxgpuanacondaubuntu
关注“迈微AI研习社”,内容首发于公众号作者:伍天舟、马曾欧、陈信达入门深度学习,很多人经历了从入门到放弃的心酸历程,且千军万马倒在了入门第一道关卡:环境配置问题。俗话说,环境配不对,学习两行泪。如果你正在面临配置环境的痛苦,不管你是Windows用户、Ubuntu用户还是苹果死忠粉,这篇文章都是为你量身定制的。接下来就依次讲下Windows、Mac和Ubuntu的深度学习环境配置问题。一、Win
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 选课(贪心) pta
wzx_Eleven
算法
小明是个好学的程序猿,他想在一天内尽可能多的选择课程进行学习。在下列课程中,他能选择的最多课程是几门?输入格式:第一行为一个整数n,表示课程总数。接下来每行为x,y,z表示课程名,开始时间,结束时间。输出格式:输出一个整数,表示小明最多可选的课程数。输入样例:5Art910English9.310.3Math1011Computer10.311.3Music1112输出样例:在这里给出相应的输出。
- 大三学生面试经历(2)
无限大.
面试面试职场和发展
继续昨天的内容,我面试的是一个Java实习岗,但是居然也问了我前端(vue)相关的问题最大的感觉就是,现在真的越来越卷了,后端都把前端的东西卷完了,当时是线上面试,感觉答的不太好(因为确实没准备的太全),接下来的时间继续加强加强这些方面的学习愿与诸君共勉!具体如下1.请简述Vue.js的生命周期函数及其执行顺序2.Vue.js中的v-bind指令和v-model指令有什么区别?3.请简述Vue.j
- 计算1+2+3+4+5+6...+100用python_100个Python练手小程序,学习python的很好的资料
weixin_39879881
原标题:100个Python练手小程序,学习python的很好的资料100个Python练手小程序,学习python的很好的资料,覆盖了python中的每一部分,可以边学习边练习,更容易掌握python。本文附带基础视频教程:私信回复【基础】就可以获取的【程序1】题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?1.程序分析:可填在百位、十位、个位的数字都是1、2、
- 2024年12月蓝桥杯Scratch12月stema选拔赛真题试卷
嗨信奥
scratch青少年编程蓝桥杯
完整的题目及在线模拟考试可点击下方链接前往:2024年蓝桥杯Scratch12月stema选拔赛真题_scratch_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tidan/scratch/show-267.html
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- nodeJS 系统学习(模块-章节1)
BYh_blog
js基础node.jsjavascript
module(模块)1.概念(理论)利用模块化,根据代码功用将应用拆分为不同的模块。增强代码的可读性,可迭代性等一切具有客观良性的作用。一般情况下每个文件就是一个模块。文件路径则是模块名。2.实践(操作)CODE模块之间可以相互引用。通过require、exports、module三个预先定义好的node环境变量module.js测试模块代码console.log(module);module.e
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_