自己动手写编译器:DFA状态机最小化算法

上一节我们完成了从NFA到DFA的状态机转换,有个问题是状态机并非处于最有状态:
自己动手写编译器:DFA状态机最小化算法_第1张图片
在上图的状态机中,状态6和7其实可以合成一个状态点,本节我们看看如何将这类节点进行合并,使得状态机处于最精简状态(状态4也是终结点,图中有误)。

首先我们把所有节点罗列成下表:

所有节点 输入字符D后跳转 输入字符.后跳转 是否是接收状态
0 2 1 no
1 3 _ no
2 5 4 no
3 _ _ yes
4 6 _ yes
5 5 1 no
6 7 _ yes
7 7 _ yes

第一步我们先把节点根据是否为终结点分成两组,非终结点为一组,终结点为一组,并给每组设置编号,第一组编号0,第二组编号1:
[0,1,2,5]->(0), [3,4,6,7]->(1)

接下来我们分别进入每个分区,分别取出其中两个节点,如果他们接收相同输入,如果跳转的节点在不同分区,那么我们就认为这两个节点不能合成一个点,首先我们看分区0中的点0,它接收D后跳转到2,而节点2位于分区0;分区0中的点1接收D后跳转到节点3,它位于分区1;分区0中节点2接收D后跳转到节点5,后者位于分区0;分区0中节点5接收D后跳转5,后者同样位于分区0,于是我们把分区0中的节点1单独隔离出来形成一个分区:
[0,2,5]->(0), [1]->(2), [3,4,6,7]->(1)

接着我们看分区1,分区1中的节点3接收D后没有跳转,节点4接收D后跳转6,后者位于分区1;节点6,7接收D后跳转分区1,因此节点3要从分区1中隔离出来自己形成一个分区:
[0,2,5]->(0), [1]->(2), [3]->(3), [4,6,7]->(1)

接下来我们以输入’.‘来看每个分区,在分区0中节点0接收’.‘后跳转1,后者位于分区2;节点2接收’.‘,跳转到节点4,后者位于分区1,节点5接收’.'后跳转到节点1,后者为于分区2,因此我们把节点2从分区0中区分开成为一个新分区:
[0,5]->(0), [1]->(2), [3]->(3), [2]->(4), [4,6,7]->(1)

对于只有1个节点的分区我们可以忽略,现在我们看分区1,节点4接收’.‘后没有跳转,节点6接收’.'后没有跳转,节点7接收’.'后也是没有跳转,因此这三个点依然可以属于同一个分区。接下来我们继续返回到分区0,节点0接收D后跳转节点2,后者位于分区4,节点5接收D后跳转到节点5,后者位于分区0,因此我们把点0从分区0拿出来形成一个新分区:
[5]->(0), [1]->(2), [3]->(3), [2]->(4),[4,6,7]->(1), [0]->(5)
由此我们把节点4,6,7合并成一个节点,其他分区都只有一个节点,现在我们用分区编号替代每个分区集合中的点,由此得到DFA状态机如下:

自己动手写编译器:DFA状态机最小化算法_第2张图片

下面我们给出算法的步骤描述,首先给出变量声明:
c: 当前输入字符
group: 一个分区中节点的集合,它也对应一个分区
groups: 当前分区集合
new: 当前分区中被拿出来的节点集合
first: 当前分区中第一个节点
next: 分区中不同于first的另一个节点,如果当前分区除了first对应节点外没有其他未访问过的节点,那么它取值nil
go_first: first对应节点在接收c表示的输入后跳转的节点
go_next: next对应节点接收c表示输入后跳转的节点。

初始化:
先将所有非终结节点放入分区0,将所有终结节点放入分区1,于是groups中包含两个group对象

重复如下步骤,直到groups为空
for(从groups中取出一个group) {
new = []
first = group中第一个节点
next = group中不同于first的节点,如果没有新节点那么设置为nil
for next {
for (当前输入字符c) {
go_first = first 对应节点接收字符c后跳转的节点
go_next = next对应节点接收字符c后跳转的节点
if go_first 和 go_next不属于同一个分区,把next对应节点加入到集合new
}
next 指向当前集合中下一个节点
}

if new != nil {
groups = append(groups, new
}
}

下面我们看看具体代码实现,在nfa_to_dfa.go中继续添加以下代码:

func (n *NfaDfaConverter) initGroups() {
	//先把节点根据接收状态分为两个分区
	for i := 0; i < n.nstates; i++ {
		if n.dstates[i].isAccepted {
			n.groups[1] = append(n.groups[1], n.dstates[i].state)
			//记录状态点对应的分区
			n.inGroups[n.dstates[i].state] = 1
		} else {
			n.groups[0] = append(n.groups[0], n.dstates[i].state)
			n.inGroups[n.dstates[i].state] = 0
		}
	}

	n.numGroups = 2
}

func (n *NfaDfaConverter) printGroups() {
	//打印当前分区的信息
	for i := 0; i < n.numGroups; i++ {
		group := n.groups[i]
		fmt.Printf("分区号: %d", i)
		fmt.Println("分区节点如下:")
		for j := 0; j < len(group); j++ {
			fmt.Printf("%d ", group[j])
		}
		fmt.Printf("\n")
	}
}

func (n *NfaDfaConverter) minimizeGroups() {
	for {
		oldNumGroups := n.numGroups
		for current := 0; current < n.numGroups; current++ {
			//遍历每个分区,将不属于同一个分区的节点拿出来形成新的分区
			if len(n.groups[current]) <= 1 {
				//对于只有1个元素的分区不做处理
				continue
			}

			idx := 0
			//获取分区第一个元素
			first := n.groups[current][idx]
			newPartition := false
			for idx+1 < len(n.groups[current]) {
				next := n.groups[current][idx+1]
				//如果分区还有未处理的元素,那么看其是否跟first对应元素属于同一分区
				for c := MAX_CHARS - 1; c >= 0; c-- {
					gotoFirst := n.dtrans[first][c]
					gotoNext := n.dtrans[next][c]
					if gotoFirst != gotoNext && (gotoFirst == F || gotoNext == F || n.inGroups[gotoFirst] != n.inGroups[gotoNext]) {
						//如果first和next对应的两个节点在接收相同输入后跳转的节点不在同一分区,那么需要将next对应节点加入新分区
						//先将next对应节点从当前分区拿走
						n.groups[current] = append(n.groups[current][:idx+1], n.groups[current][idx+2:]...)
						n.groups[n.numGroups] = append(n.groups[n.numGroups], next)
						n.inGroups[next] = n.numGroups
						newPartition = true
						break
					}
				}

				if !newPartition {
					//如果next没有被拿出当前分区,那么idx要增加去指向下一个元素
					idx += 1
				} else {
					//如果next被挪出当前分区,那么idx不用变就能指向下一个元素♀️
					newPartition = false
				}
			}

			if len(n.groups[n.numGroups]) > 0 {
				//有新的分区生成,因此分区计数要加1
				n.numGroups += 1
			}
		}

		if oldNumGroups == n.numGroups {
			//如果没有新分区生成,算法结束
			break
		}
	}

	n.printGroups()
}

func (n *NfaDfaConverter) fixTran() {
	newDTran := make([][]int, DFA_MAX)
	//新建一个跳转表
	for i := 0; i < n.numGroups; i++ {
		newDTran[i] = make([]int, MAX_CHARS)
	}

	/*
		我们把当前分区号对应一个新的DFA节点,当前分区(用A表示)中取出一个节点,根据输入字符c获得其跳转的节点。
		然后根据跳转节点获得其所在分区(用B表示),那么我们就得到新节点A在接收字符c后跳转到B节点	。
		这里我们从当前分区取出一个节点就行,因为在minimizeGroups中我们已经确保最终的分区中,里面每个节点在接收
		同样的字符后,所跳转的节点所在的分区肯定是一样的。
	*/
	for i := 0; i < n.numGroups; i++ {
		//从当前分区取出一个节点即可
		state := n.groups[i][0]
		for c := MAX_CHARS - 1; c >= 0; c-- {
			if n.dtrans[state][c] == F {
				newDTran[state][c] = F
			} else {
				destState := n.dtrans[state][c]
				destPartition := n.inGroups[destState]
				newDTran[state][c] = destPartition
			}
		}
	}

	n.dtrans = newDTran
}

func (n *NfaDfaConverter) MinimizeDFA() {
	n.initGroups()
	n.minimizeGroups()
	n.fixTran()
}

func (n *NfaDfaConverter) PrintMinimizeDFATran() {
	for i := 0; i < n.numGroups; i++ {
		for j := 0; j < MAX_CHARS; j++ {
			if n.dtrans[i][j] != F {
				fmt.Printf("from state %d jump to state %d with input: %s\n", i, n.dtrans[i][j], string(j))
			}
		}
	}
}

完成上面代码后,我们在main.go调用一下上面的实现:

func main() {
	lexReader, _ := nfa.NewLexReader("input.lex", "output.py")
	lexReader.Head()
	parser, _ := nfa.NewRegParser(lexReader)
	start := parser.Parse()
	parser.PrintNFA(start)
	//str := "3.14"
	//if nfa.NfaMatchString(start, str) {
	//	fmt.Printf("string %s is accepted by given regular expression\n", str)
	//}
	nfaConverter := nfa.NewNfaDfaConverter()
	nfaConverter.MakeDTran(start)
	nfaConverter.PrintDfaTransition()

	nfaConverter.MinimizeDFA()
	fmt.Println("---------new DFA transition table ----")
	nfaConverter.PrintMinimizeDFATran()
}

上面代码运行后输出结果如下:

分区号: 0分区节点如下:
0 
分区号: 1分区节点如下:
3 
分区号: 2分区节点如下:
1 
分区号: 3分区节点如下:
4 6 7 
分区号: 4分区节点如下:
2 
分区号: 5分区节点如下:
5 
---------new DFA transition table ----
from state 0 jump to state 2 with input: .
from state 0 jump to state 4 with input: 0
from state 0 jump to state 4 with input: 1
from state 0 jump to state 4 with input: 2
from state 0 jump to state 4 with input: 3
from state 0 jump to state 4 with input: 4
from state 0 jump to state 4 with input: 5
from state 0 jump to state 4 with input: 6
from state 0 jump to state 4 with input: 7
from state 0 jump to state 4 with input: 8
from state 0 jump to state 4 with input: 9
from state 1 jump to state 1 with input: 0
from state 1 jump to state 1 with input: 1
from state 1 jump to state 1 with input: 2
from state 1 jump to state 1 with input: 3
from state 1 jump to state 1 with input: 4
from state 1 jump to state 1 with input: 5
from state 1 jump to state 1 with input: 6
from state 1 jump to state 1 with input: 7
from state 1 jump to state 1 with input: 8
from state 1 jump to state 1 with input: 9
from state 2 jump to state 3 with input: .
from state 2 jump to state 5 with input: 0
from state 2 jump to state 5 with input: 1
from state 2 jump to state 5 with input: 2
from state 2 jump to state 5 with input: 3
from state 2 jump to state 5 with input: 4
from state 2 jump to state 5 with input: 5
from state 2 jump to state 5 with input: 6
from state 2 jump to state 5 with input: 7
from state 2 jump to state 5 with input: 8
from state 2 jump to state 5 with input: 9
from state 4 jump to state 3 with input: 0
from state 4 jump to state 3 with input: 1
from state 4 jump to state 3 with input: 2
from state 4 jump to state 3 with input: 3
from state 4 jump to state 3 with input: 4
from state 4 jump to state 3 with input: 5
from state 4 jump to state 3 with input: 6
from state 4 jump to state 3 with input: 7
from state 4 jump to state 3 with input: 8
from state 4 jump to state 3 with input: 9
from state 5 jump to state 2 with input: .
from state 5 jump to state 5 with input: 0
from state 5 jump to state 5 with input: 1
from state 5 jump to state 5 with input: 2
from state 5 jump to state 5 with input: 3
from state 5 jump to state 5 with input: 4
from state 5 jump to state 5 with input: 5
from state 5 jump to state 5 with input: 6
from state 5 jump to state 5 with input: 7
from state 5 jump to state 5 with input: 8
from state 5 jump to state 5 with input: 9

上面输出的跳转表画出来时可能跟我们上面不太一样,不一样的主要是节点的编号,但是节点的跳转结构跟我们在前面的分析完全相符,更详细的讲解和调试演示,请在B站搜索coding迪斯尼。

你可能感兴趣的:(编译原理,DFA跳转表)