概率论与数理统计-浙大第四版

第一章 概率论基本概念

  1. 写出下列随机试验的样本空间S:

样本空间即试验结果的集合

(1) [0,100]
(2) 10,11,...
(3) --,+--,++++,+++-,++--,++-+,+-++,+-+-,-+++,-++-,-+-+,-+--
(4) (x,y), 0<=x,y<=1

  1. 设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:

(1) \quad A \bigcap \overline{B \bigcup C} \\ (2) \quad A \bigcap B \bigcap \overline C \\ (3) \quad A \bigcup B \bigcup C\\ (4) \quad A \bigcap B \bigcap C\\ (5) \quad \overline{A \bigcup B \bigcup C}\\ (6) \quad [\overline{A \bigcup B \bigcup C}] \bigcup [A\bigcap \overline{B\bigcup C}]\bigcup[B\bigcap \overline{A\bigcup C}]\bigcup [C\bigcap \overline{A\bigcup B}]\\

(1)

(2)

(3)

  1. 设A,B是两个事件
    (1)

    (2)

  2. 10片药片中有5片是安慰剂
    (1)

    (2)

  3. 在房间内有10人...

  4. 某油漆公司发出17桶油漆...

  5. 在1500件产品中有400件次品,1100件正品,任取200件。
    (1) \quad P=\frac{\mathrm{C}_{400}^{90}\mathrm{C}_{1100}^{110}}{\mathrm{C}_{1500}^{200}}\\ (2) \quad P=1-\frac{\mathrm{C}_{400}^{1}\mathrm{C}_{1100}^{199}}{\mathrm{C}_{1500}^{200}} - \frac{\mathrm{C}_{1100}^{200}}{\mathrm{C}_{1500}^{200}}\\\\

  6. 从5双不同的鞋子里,任意去4只,问至少配成一双的概率

  7. 在11张卡片上分别写上...

  8. 将3只球随机放入4个杯子,求杯子中最大球数为1,2,3的概率

  9. 50只铆钉随机...

  10. 一个俱乐部有5名一年级学生
    (1) \quad P=\frac{\mathrm{C}_{5}^{1}\mathrm{C}_{2}^{1}\mathrm{C}_{3}^{1}\mathrm{C}_{2}^{1}}{\mathrm{C}_{12}^{4}}\\ (2) \quad P=\frac{\mathrm{C}_{5}^{2}\mathrm{C}_{2}^{1}\mathrm{C}_{3}^{1}\mathrm{C}_{2}^{1}}{\mathrm{C}_{12}^{5}}+\frac{\mathrm{C}_{5}^{}\mathrm{C}_{2}^{2}\mathrm{C}_{3}^{1}\mathrm{C}_{2}^{1}}{\mathrm{C}_{12}^{5}}+\frac{\mathrm{C}_{5}^{1}\mathrm{C}_{2}^{1}\mathrm{C}_{3}^{2}\mathrm{C}_{2}^{1}}{\mathrm{C}_{12}^{5}}+\frac{\mathrm{C}_{5}^{1}\mathrm{C}_{2}^{1}\mathrm{C}_{3}^{1}\mathrm{C}_{2}^{2}}{\mathrm{C}_{12}^{5}}\\

  1. 掷两个骰子,已知两个骰子点数和为7,求其中有一个点数为1的概率

  2. 根据以往的资料...

  3. 已知10件产品中有两件次品...
    (1) \quad P=\frac{\mathrm{C}_{8}^{2}}{\mathrm{C}_{10}^{2}}\\ (2) \quad P=\frac{\mathrm{C}_{2}^{2}}{\mathrm{C}_{10}^{2}}\\ (3) \quad P=\frac{\mathrm{C}_{2}^{1}\mathrm{C}_{8}^{1}}{\mathrm{C}_{10}^{2}}\\ (4) \quad P=1-\frac{\mathrm{C}_{9}^{1}\mathrm{C}_{8}^{1}}{\mathrm{C}_{10}^{2}}\\

  4. 某人忘记电话号码...
    P_1=\frac{1}{10}+\frac{9}{\mathrm{C}_{10}^{2}}+\frac{\mathrm{C}_{9}^{2}}{\mathrm{C}_{10}^{3}}\\ P_2=\frac{1}{5}+\frac{4}{\mathrm{C}_{5}^{2}}+\frac{\mathrm{C}_{4}^{2}}{\mathrm{C}_{5}^{3}}\\

(1) \quad P=\frac{n/(n+m)+N}{N+M+1},从甲中取出n/(n+m)个白球放入了乙中。\\ (2) \quad P=\frac{2\cdot 4/(4+5)+5}{5+4+2},从甲中取出2\cdot 4/(4+5)个白球放入了乙中。\\

20.某种产品的商标为...
任意两个不同字母脱落,组合后完全正确的概率为1/2,相同字母脱落,组合后必定正确\\ P=1/2+\frac{1}{2}\cdot [\frac{1}{\mathrm{C}_{5}^{2}}+\frac{1}{\mathrm{C}_{5}^{2}}]=3/5

  1. 已知男子有5%是色盲...

  2. 一学生接连参加同一课程...
    P(第一次不及格)=1-p,P(两次不及格)=(1-p)(1-p/2)\\ P(第一次及格且第二次及格)=p^2\\ P(第二次及格且第一次不及格)=\frac{p}{2}\cdot (1-p)\\ P(第一次及格|第二次及格)=\frac{p^2}{p^2+p(1-p)/2}=2p/(1+p)

  3. 将两信息编码为...

  4. 有两厢同类零件...
    P=\frac{1}{2}[\frac{10}{50}+\frac{18}{30}]=\frac{2}{5}\\ 已知第一件是正品,那么该正品来自第一箱和第二箱的概率为p_1,p_2\\ p_1=\frac{1}{4},p_2=\frac{3}{4},\\ P(第二次取到一等品|第一次取得一等品)=p_1\cdot \frac{9}{49}+p_2\cdot \frac{17}{29}

  5. 某人下午5:00下班...

  6. 病树的主人外出...

  7. 设本体涉及的事件都有意义...
    (1) \quad P(AB|A)=\frac{P(AB)}{P(A)} \ge \frac{P(AB)}{P(A\bigcup B)}=\frac{P(AB\bigcap(A\bigcup B))}{P(A\bigcup B)}=P(AB|A\bigcup B)\\ (2) \quad P(A|B)=1\Longrightarrow P(AB)=P(B)\Longrightarrow P(\overline A \overline B)=P(\overline A)\\ P(\overline B|\overline A)=P(\overline A \overline B)/P(\overline A)=1\\ (3) \quad P(A)=P(A|C)+P(A|\overline C) \ge P(B|C)+P(B|\overline C)=P(B)

  8. 有两种花籽...

  9. 根据报道美国人..

  10. 设事件A,B的概率均大于0

  11. 有一种检验艾滋病的方法...

  12. 试分别求一下两个系统的可靠性...

第二章 随机变量及其分布

  1. 进行重复独立试验...

6.一大楼装有5台...
(1) \quad P_1=\mathrm{C}_{5}^{2}0.1^20.9^3\\ (2) \quad P_2=\mathrm{C}_{5}^{3}0.1^30.9^2+\mathrm{C}_{5}^{4}0.1^40.9+\mathrm{C}_{5}^{5}0.1^5\\ (3) \quad P_3=1-\mathrm{C}_{5}^{4}0.1^40.9-\mathrm{C}_{5}^{5}0.1^5\\ (4) \quad P_4=1-\mathrm{C}_{5}^{5}0.9^5

  1. 设事件A在每次试验...
    (1) \quad P_1=1-\mathrm{C}_{5}^{0}0.7^5-\mathrm{C}_{5}^{1}0.3\cdot 0.7^4-\mathrm{C}_{5}^{2}0.3^2\cdot 0.7^3\\ (2) \quad P_2=1-\mathrm{C}_{7}^{0}0.7^7-\mathrm{C}_{7}^{1}0.3\cdot 0.7^6-\mathrm{C}_{7}^{2}0.3^2\cdot 0.7^5\\

  2. 甲乙两人投篮...
    P_1(k=0)=0.4^3,P_1(k=1)=3\cdot 0.4^2\cdot 0.6,\\ P_1(k=2)=3\cdot 0.4\cdot 0.6^2,P_1(k=3)=0.6^3,\\ P_2(k=0)=0.3^3,P_2(k=1)=3\cdot 0.3^2\cdot 0.7,\\ P_2(k=2)=3\cdot 0.3\cdot 0.7^2,P_2(k=3)=0.7^3,\\ (1) \quad P_1=\sum_{i=0}^{3}[P_1(k=i)\cdot P_2(k=i)]\\ (2) \quad P_2=\sum_{i=1}^{3}\sum_{j=0}^{j<i}[P_1(k=i)\cdot P_2(k=j)]

  3. 有一大批产品,其验收方案...

(1) \quad P_1=\frac{1}{\mathrm{C}_{8}^{4}}=\frac{1}{70}\\ (2) \quad P_2=\mathrm{C}_{10}^{3}(\frac{1}{70})^3(\frac{69}{70})^7,P_2极小,靠猜几乎不能完成,说明有区分能力

(1) \quad 12点-15点,呼叫率X_1\sim P(\frac{3}{2}),P(k=0)=\frac{e^{-\lambda}\lambda^k}{k!}=e^{\frac{2}{3}}\\ (2) \quad 12点-17点,呼叫率X_2\sim P(\frac{5}{2}),P=1-P(k=0)=1-e^{\frac{2}{5}}

(1) \quad X_1\sim P(\frac{1}{3}),P(k=1)=\frac{e^{-\lambda}\lambda^k}{k!}=\frac{1}{3}e^{1/3}\\ (2) \quad P(k=0)=\frac{e^{-\lambda}\lambda^k}{k!}=e^{-\lambda}=e^{-2t}>0.5 \Longrightarrow t \le \frac{ln2}{2}小时

(1) \quad \int_{}{}f(x)dx=\int_{}{}Ax^2e^{-x^2/b}dx=-\frac{Ab}{2}[xe^{-\frac{x^2}{b}}|_{0}{\infty}-\int_{}{}e^{\frac{-x^2}{2}}dx]=\frac{Ab}{2}\int_{}{}e^{\frac{-x^2}{2}}dx=1\\ A=\frac{4}{b\sqrt{\pi b}}\\ (2) \quad F(x)=\int_{\infty}^{x}f(t)dt=\int_{\infty}^{x}\frac{1}{241}e^{-t/241}dt=1-e^{-x/241}\\ P(50 \lt T \lt 100)=F(100)-F(50)=e^{-50/241}-e^{-100/241}

F(x)=\int_{1000}^{x}f(t)dt=1-\frac{1000}{x}\\ P(X>1500)=1-F(1500)=\frac{2}{3}\\ P(至少两个大于1500)=1-P(没有大于1500的)-P(一个大于1500)=1-(\frac{1}{3})^5-5\cdot (\frac{1}{3})^4 \cdot \frac{2}{3}=\frac{232}{243}

(1) \quad P(2 \lt X \leq 5)=P(\frac{2-3}{2} \lt \frac{X-3}{2} \leq \frac{5-3}{2})=\Phi(1)-\Phi(-\frac{1}{2})\\ P(-4 \lt X \leq 10)=\Phi(\frac{7}{2})-\Phi(-\frac{7}{2})=2\Phi(\frac{7}{2})-1\\ P(|X| > 2)=1+P(X\lt-2)-P(X\lt2)=1+\Phi(-\frac{5}{2})-\Phi(-\frac{1}{2}) P(X\gt3)=1/2\\ (2) \quad 各占一半,c=3\\ (3) \quad P(X>d)=1-P(X \leq d)=1-\Phi(\frac{d-3}{2}) \ge 0.9,查表d \leq 0.436\\

(1) \quad P(X \leq 105) = \Phi(\frac{105-110}{12})=1-\Phi(5/12)\\ P(100\lt X \leq 120)=\Phi(\frac{120-110}{12})-\Phi(\frac{100-110}{12})=2\cdot \Phi(5/6)-1\\ (2) \quad P(X \gt x)=1-P(X \leq x)=1-\Phi(\frac{x-110}{12})\leq 0.05,查表x=129.74

第三章 多维随机变量

第四章 随机变量的数字特征

  1. 某产品的次品率为0.1...

  1. 有3只球,4个盒子...

(1) \quad E(X)= -0.2,E(X^2)=2.8,E(3X^2+5)=13.4\\ (2) \quad E(1/(X+1))=\sum_{k=1}^{\infty}[\frac{1}{k+1}\frac{e^{-\lambda}\lambda^k}{k!}] =\sum_{k=1}^{\infty}[\frac{e^{-\lambda}\lambda^k}{(k+1)!}] =\frac{e^{-\lambda}}{\lambda}\sum_{k=1}^{\infty}[\frac{\lambda^{k+1}}{(k+1)!}]=\frac{e^{-\lambda}}{\lambda}[\sum_{k=0}^{\infty}[\frac{\lambda^{k+1}}{(k+1)!}]-1]=\frac{1-e^{-\lambda}}{\lambda}

(1) \quad E(Y)=\int_{0}^{\infty}2xf(x)dx=2\\ (2) \quad E(Y)=\int_{0}^{\infty}e^{-2x}f(x)dx=\frac{1}{3}\int_{0}^{\infty}e^{-3x}dx=\frac{1}{3}\\ (3) \quad P(U\leq x)=P(max\{X_1,\cdots,X_n\}\leq x)=P(X_1\leq x)\cdots P(X_n \leq x)=x^n=F(x)\\ 概率密度函数f(x)=F^{'}(x)=nx^{n-1},\Longrightarrow E(U)=\int_{0}^{1}xf(x)dx=\frac{n}{n+1}\\ (4) \quad P(V\leq x)=1-P(V \gt x)=1-P(min\{X_1,\cdots,X_n\}\gt x)=1-P(X_1\gt x)\cdots P(X_n \gt x)=1-[1-x]^n=F(x)\\ 概率密度函数f(x)=F^{'}(x)=n(1-x)^{n-1},\Longrightarrow E(U)=\int_{0}^{1}xf(x)dx=\frac{1}{n+1}\\

(1) \quad f(x)=\int_{}{}f(x,y)dy=4x^3,0\lt x \lt 1 ,E(X)=\int_{}{}xf(x)dx=\frac{4}{5}\\ f(y)=\int_{}{}f(x,y)dx=\int_{y}^{1}f(x,y)dx=12y^2-12y^3,0 \lt y \lt 1,E(Y)=\int_{}{}yf(y)dy=\frac{3}{5}\\ E(XY)=\int_{}^{}\int_{}^{}xyf(x,y)dxdy=\int_{0}^{1}6y^2dy\int_{y}^{1}2xdx=\int_{0}^{1}6y^2(1-y^2)dy=\frac{1}{2}\\ E(X^2+Y^2)=E(X^2)+E(Y^2)=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}\\ (2) \quad f(x)=\int_{}^{}f(x,y)dy=\int_{}^{}\frac{1}{y}e^{-(y+x/y)}dy=

直径R\sim U(a,b),E(R)=\frac{a+b}{2},E(\frac{R}{2})=\frac{a+b}{4},D(\frac{R}{2})=\frac{D(R)}{4}=\frac{(b-a)^2}{48},E[(\frac{R}{2})^2]=\frac{(b-a)^2}{48}+(\frac{a+b}{4})^2\\ E(\pi(\frac{R}{2})^2)=\pi \cdot E[(\frac{R}{2})^2]=\frac{\pi}{12}\cdot (a^2+b^2+ab)

将n个球,放入n个盒子,共有T=\mathrm{A}_{n}^{n}种分法,i号球落在i号盒子有\mathrm{A}_{n}^{n}/n种\\ E(X)=\frac{n\cdot \mathrm{A}_{n}^{n}/n }{T}=1

E(X)=\int_{0}^{\infty}xf(x)dx=\frac{1}{2\sigma^2}\int_{\infty}^{\infty}x^2e^{-\frac{x^2}{2\sigma^2}}dx=\frac{\sqrt{2\pi}\sigma^3}{2\sigma^2}=\sqrt{\frac{\pi}{2}}\sigma\\ E(X^2)=\int_{0}^{\infty}x^2f(x)dx,分部积分得E(X^2)=2\sigma^2 \Longrightarrow D(X)=E(X^2)-E^2(X)=\frac{(4-\pi)}{2}\sigma^2

(1) \quad E(Y)=2E(X_1)-E(X_2)+3E(X_3)-\frac{1}{2}E(X_4)=7\\ D(Y)=4D(X_1)+D(X_2)+9D(X_3)+\frac{1}{4}E(X_4)=37.25\\ (2) \quad Z_1\sim N(\mu_1,\sigma_1^2),E(Z_1)=2E(X)+E(Y)=2080,D(Z_1)=4D(X)+D(Y)=4225\\ \quad Z_2\sim N(\mu_2,\sigma_2^2),E(Z_2)=E(X)-E(Y)=80,D(Z_1)=D(X)+D(Y)=1525 \\ P(X>Y)=1-P(X-Y<0)=1-P(\frac{X-Y-\mu_2}{\sigma_2}<-\frac{\mu_2}{\sigma^2})=\Phi(\frac{\mu_2}{\sigma^2})=0.9798\\ P(X+Y>1400)=P(\frac{X+Y-1380}{\sigma_2} > \frac{1400-1380}{\sigma_2})=P(\frac{X+Y-1380}{\sigma_2} > \frac{1400-1380}{\sqrt{1525}})=1-\Phi(\frac{20}{\sqrt{1525}})

P(X_1+\cdots+X_n > 2000)=0.05,P(X_1+\cdots+X_n \leq 2000)=0.95\\ P(\frac{X_1+\cdots+X_n - 50n}{2.5\cdot \sqrt{n}} \leq \frac{2000-50n}{2.5\cdot \sqrt{n}})=0.95 \Longrightarrow \Phi(\frac{2000-50n}{2.5\cdot \sqrt{n}})=0.95,n=39.4,取39

E(XY)=E(X)E(Y)=1/4,E(X/Y)=E(X)E(1/Y),E(1/Y)不存在\\ E(ln(XY))=E(ln(X))+E(ln(Y))=2\int_{0}^{1}lnxdx=2[xlnx|_0^1-1]\\ \lim_{x\rightarrow 0}xlnx=\lim_{x\rightarrow 0}\frac{lnx}{\frac{1}{x}},洛必达法则求导,\lim_{x\rightarrow 0}\frac{lnx}{\frac{1}{x}}=\lim_{x\rightarrow 0}\frac{1/x}{-1/x^2}=0\\ E(ln(XY))=-2\\ E(|Y-X|)=\int_{0}^{1}\int_{0}^{1}|y-x|dxdy=\int_{0}^{1}\int_{x}^{1}(y-x)dxdy+\int_{0}^{1}\int_{0}^{x}(x-y)dxdy=1/3

(1) \quad P(X_1=2,X_2=2,X_3=5)=P(X_1=2)P(X_2=2)P(X_3=5)=\mathrm{C}_{4}^{2}(\frac{1}{2})^4\cdot \mathrm{C}_{6}^{2}(\frac{1}{3})^2(\frac{2}{3})^4\cdot \mathrm{C}_{6}^{5}(\frac{1}{3})^5(\frac{2}{3})\\ E(X_1X_2X_3)=E(X_1)E(X_2)E(X_3)=2\cdot 2\cdot 2=8\\ E(X_1-X_2)=E(X_1)-E(X_2)=0\\ E(X_1-2X_2)=E(X_1)-2E(X_2)=-2\\ (2) \quad X,Y相互独立时,E(Z)=E(5X-Y+15)=5E(X)-E(Y)+15=29\\ D(Z)=25D(X)+D(Y)=109\\ X,Y不相关时,E(Z)=29,D(Z)=D(5X-Y)=25D(X)+D(Y)-10cov(X,Y)=109\\ \rho_{x,y}=0.25时,\frac{cov(X,Y)}{D(X)D(Y)}=0.25,cov(X,Y)=1.5\\D(Z)=D(5X-Y)=25D(X)+D(Y)-10cov(X,Y)=109-15=94

f(x)=\int_{-x}^{x}f(x,y)dy=2x\\ E(X)=\int_{0}^{1}xf(x)dx=2/3\\ f(y)=\begin{cases} y, \quad 0 \lt y \lt 1\\-y,\quad -1 \lt y \lt 0 \end{cases} \\ E(Y)=\int_{0}^{1}y^2dy+\int_{-1}^{0}-y^2dy=0\\ cov(X,Y)=E(XY)-E(X)E(Y)=0

f(x)=\int_{0}^{2}f(x,y)dy=\frac{x+1}{4},E(X)=\int_{0}^{2}xf(x)dx=\frac{7}{6}=E(Y)\\ E(XY)=\int_{0}^{2}\int_{0}^{2}xyf(x,y)dxdy=\frac{4}{3},Cov(X,Y)=E(XY)-E(X)E(Y)=-\frac{1}{36}\\ \rho_{xy}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}=-\frac{1}{11},D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=\frac{5}{9}

第五章 大数定理及中心极限定理

dsad
d
sa
dsa
dsa
dsa
dsa
dsa
asd
ad
sad

你可能感兴趣的:(概率论与数理统计-浙大第四版)