- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 从零开始学习鸿蒙系统
Ning.L
华为harmonyos
1.移动通讯技术的发展-1G时代:1980年摩托罗拉开发出了第一部手机,使用的就是1G的技术。只能进行语音通话。就是大哥大。-2G时代:1996年到1997年出现了第二代GSM、CDMA等数字制式手机,增加了接收数据的功能。2G不仅可以通话,还可以数据收发的功能,最开始的速度只有9K/S。如果我想收发一些图片或者音频技术是不可能的,因为速度太慢了。后来随着互联网多媒体的流行,多了图片,视频等,所以
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- LLM-PowerHouse: 一站式大型语言模型定制训练与推理指南
Nifc666
语言模型人工智能自然语言处理whisperlangchaingpt开源软件
LLM-PowerHouse:解锁大型语言模型的潜力在人工智能和自然语言处理领域,大型语言模型(LargeLanguageModels,LLMs)正在掀起一场革命。随着GPT、BERT等模型的出现,LLMs展现出了惊人的能力,可以执行各种复杂的语言任务。然而,如何有效地训练和使用这些强大的模型仍然是一个挑战。针对这一需求,GitHub上的LLM-PowerHouse项目应运而生,为开发者、研究人员
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- 【sklearn 07】sklearn工艺流程
@金色海岸
人工智能sklearnpython机器学习
01数据的获取02数据预处理03特征的提取04特征的选择05模型的训练06模型的评估07模型的优化
- 第二十五篇 SQL优化杀手锏:用分析函数让你的查询快如闪电
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、初识分析函数:外卖骑手的一天1.1真实工作场景二、分析函数三板斧(超直观对比表)三、手把手教学:5大核心函数详解️3.1排名三剑客(班级成绩单案例)3.1.1ROW_NUMBER():唯一学号式排名3.1.2RANK():运动会颁奖式排名3.1.3DENSE_RANK():电梯楼层式排名3.2时间旅行函数(股票分析案例)3.3滑动窗口函数(疫情数据分析)四、性能优化三大绝招(让老板眼前一亮
- 第十六篇 SQL优化之计划控制:进阶之路带上这篇文章,快到起飞
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、执行计划是啥?为啥要控制它?1.1执行计划就像导航路线1.2不管控执行计划的后果二、操控执行计划的「三板斧」2.1第一招:HINT大法(直接下指令)2.2第二招:暗度陈仓(间接引导)方法1:统计信息大法方法2:虚拟列黑科技方法3:分区表妙用2.3第三招:计划冻结术(一劳永逸)SQLProfilevsBaseline对比表三、实战演练:从青铜到王者案例:分页查询优化(5秒→0.1秒)四、课后
- 第三篇 从入门到专业:SQL标准语法详解与高效编码规范指南
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、SQL的"普通话"——标准SQL1.1为什么需要标准SQL?二、SQL三大语句类型(附记忆口诀)2.1DDL(数据定义语言)——"盖房子"2.2DML(数据操作语言)——"搬家具"2.3DCL(数据控制语言)——"配钥匙"三、SQL书写规范(避免被同事吐槽)3.1基础排版规范3.2注释规范四、新手必看避坑指南4.1常见错误4.2安全操作建议五、实战训练(含答案解析)5.1创建商品表5.2数
- 迷雾渐开:美国AIGC可版权性剖析及案例梳理
人工智能
当地时间2025年1月29日,美国版权局(U.S.CopyrightOffice,USCO)发布了版权和人工智能相关法律和政策报告的第二部分——《版权和人工智能:可版权性》(以下简称“《USCO可版权性报告》”)[1],旨在探讨人工智能生成内容(AIGC)的可版权性问题。该报告明确指出,美国版权局认为现有的版权法足以解决AIGC问题,因此无需制定新的立法。具体而言,该报告在此前美国版权局于2023
- 美国首例AI训练数据版权案:从汤森路透诉罗斯案看AI训练数据的“合理使用”
人工智能
随着人工智能(AI)技术的快速发展和广泛应用,复杂的版权问题也随之而来。2025年2月11日,美国特拉华州联邦地区法院对汤森路透(ThomsonReuters)诉罗斯(Ross)案作出部分简易判决,认定被告罗斯公司未经授权使用受版权保护的作品训练AI法律检索工具的行为构成版权侵权,且不属于合理使用。[1]这是美国首个就AI训练数据作出实质性判决的案件。本文将重点分析其合理使用论述中对于“转换性目的
- P3865 【模板】ST 表 && RMQ 问题 题解
huangyuze114514
算法数据结构
思路求区间最大值,一道ST表模板题。没学过ST表的看这里。当查询区间最值时,若只用暴力,肯定会超时,所以我们可以建造一个ST表,ST表可以先求出一些小的区间的最值,然后以此类推求出更大区间的最值,这样在查询的时候时间就会大大减少。关于建表,我们举个例子,如果我们输入一个长度为888的数组,默认这一层为第000层,那么第一层的1到71到71到7个数,每个数是下面两个数的最值;第二层的1到51到51到
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- 【人工智能基础2】Tramsformer架构、自然语言处理基础、计算机视觉总结
roman_日积跬步-终至千里
人工智能习题人工智能自然语言处理计算机视觉
文章目录七、Transformer架构1.替代LSTM的原因2.Transformer架构:编码器-解码器架构3.Transformer架构原理八、自然语言处理基础1.语言模型基本概念2.向量语义3.预训练语言模型的基本原理与方法4.DeepSeek基本原理九、计算机视觉七、Transformer架构1.替代LSTM的原因处理极长序列时,效率下降:虽然LSTM设计的初衷是解决长期依赖问题,即让模型
- 「C语言指针函数与函数指针:从内存管理到灵活调用的实战指南」
℡残城碎梦
c语言指针函数函数指针函数指针数组
1.指针函数:外卖柜的「生存法则」核心痛点:返回局部变量地址导致崩溃?堆区与栈区傻傻分不清?生活类比:栈区≈临时摊位(函数结束即销毁)堆区≈智能外卖柜(手动申请释放,长期有效)代码对比://错误!返回栈区地址(临时摊位被拆)char*bug_demo(){charbuf[32]="hello";returnbuf;//危险操作!}//正确!返回堆区地址(外卖柜长期存餐)char*correct_d
- 任正非蜕变:追逐滚滚洪流中的那张船票
weixin_33843947
操作系统数据库大数据
上一篇文章(《任正非蜕变:中国首个世界顶级的企业战略浮出水面》,详见21世纪经济报道2016年1月13日13版),得到了不少朋友的好评,其实我把最重要的一手留在了第二篇。与激情充沛的第一篇相比,这一篇我们注入更多的理性和冷静,来剖析华为真正的挑战。任正非讲话中大家印象最深刻的大概就是明确了终端的收入目标,“终端要敢于5年内超越1000亿美元的销售收入”。但奇怪的是,对于华为其他两块业务以及华为整体
- 【AI】使用Python实现机器学习小项目教程
丶2136
AI人工智能python机器学习
引言在本教程中,我们将带领您使用Python编程语言实现一个经典的机器学习项目——鸢尾花(Iris)分类。通过这个项目,您将掌握机器学习的基本流程,包括数据加载、预处理、模型训练、评估和优化等步骤。论文AIGC检测,降AIGC检测,AI降重,三连私信免费获取:ReduceAIGC9折券!DetectAIGC立减2元券!AI降重9折券!目录引言一、项目背景与目标二、开发环境准备2.1所需工具2.2环
- LORA 微调大模型:从入门到入土
大模型.
人工智能开发语言gptagi架构大模型
在当今人工智能领域,预训练的大模型已经成为推动技术发展的核心力量。然而,在实际项目中,我们往往会发现这些预训练模型虽然强大,但直接就去应用于一些特定的任务时,往往无法完全满足需求。这时,微调就成为了必不可少的一步。而在众多微调方法中,LORA全名(Low-RankAdaptation)以高效性和实用性,逐渐成为了许多开发者训练模型的首选项。作为一名小有经验的咸鱼开发者,我深知在实际项目中高效的进行
- Prometheus架构详解
HeZephyr
工具prometheus架构
1Prometheus简介Prometheus是一个开源的系统监控报警工具套件,它最初由SoundCloud开发,并于2016年成为CNCF(云原生计算基金会)托管的第二个项目(第一个是kubernetes)。Prometheus以其简单高效的方式收集指标而闻名,能更好地与容器平台、云平台配合,这使得它在现代云原生环境中非常受欢迎。Prometheus被广泛应用于各种场景中,包括但不限于:应用性能
- 【源码阅读】olmocr中的prompts
海绵波波107
#大模型pdf
目录一、PDF转换为训练数据二、使用微调模型三、比较差异总结一、PDF转换为训练数据让ChatGPT-4将文档(如PDF文件)转换为结构化的“银级”训练数据(silvertrainingdata)#Thisisthepromptweuseforgettingchatgpt4otoconvertdocumentsintooursilvertrainingdatadefbuild_openai_sil
- GAN模型的Python应用——生成对抗网络
代码编织匠人
python生成对抗网络开发语言
GAN模型的Python应用——生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是深度学习中的一种重要模型,已经被广泛应用于图像、文本生成等领域。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器用于生成假样本,判别器用于评估真实性。两个神经网络相互博弈,通过一次次迭代训练,最终生成器可以生成足以骗过
- 二值逻辑、三值逻辑到多值逻辑的变迁(含示例)
搏博
人工智能原理算法人工智能机器学习线性代数图像处理数据分析
二值逻辑、三值逻辑到多值逻辑的变迁是一个逻辑体系不断拓展和深化的过程,反映了人们对复杂现象和不确定性问题认识的逐步深入。前文,我们已经探讨过命题逻辑与谓词逻辑,了解了如何用符号语言从浅入深地刻画现实世界。具体可以看我的CSDN文章:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)-CSDN博客人工智能中用到的逻辑可概括地划分为两大类。第一类是经典命题逻辑和一阶谓词逻辑,第二类是泛指除经典逻辑之外的
- 如何使用Python实现生成对抗网络(GAN)
「已注销」
互联网前沿技术韩进的创作空间全栈开发知识库python生成对抗网络tensorflow深度学习数据分析
生成对抗网络(GAN)是一种深度学习模型,由两个部分组成:生成器和判别器。生成器负责生成与训练数据相似的新数据,而判别器负责判断输入数据是真实的还是由生成器生成的。这两个部分不断相互博弈,直到生成器能够生成非常逼真的数据,使判别器难以区分生成数据和真实数据。下面是一个简单的Python实现,使用TensorFlow和Keras库。在开始之前,请确保已经安装了TensorFlow和Keras。imp
- 盘点群辉NAS使用频率最高的几个套件(必备)
芥子沫
群晖运维NAS
群晖(Synology)套件中心提供了很多实用工具和应用程序,用于扩展群晖NAS(网络附加存储)的功能。商店提供的应用是相当丰富,也因为太多,很多初学者经常无从下手,所以干脆把下载量大的能装都装着试下,用了几年后,常用的就剩下那么几个,也是使用频率最高的几个套件。Top1SynologyPhotosSynologyPhotos是群晖NAS的照片管理套件,最早叫PhotoStation、Moment
- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要