- com本质论 pdf_如何使用PDF Arranger来对PDF文件进行编排和修改
weixin_39797780
com本质论pdfcreatprocess操作文件delphifedora如何隐藏顶部状态栏linux.bash_profile文件linuxc++编程pdf
PDFArranger是一个十分简单的GUI应用程序,能够帮助您拆分或合并PDF文档,以及旋转,裁剪和重新编排页面。所有前面提到的任务都可以通过交互式和直观的图形界面轻松完成。Pdfarranger是pdfshuffler的fork以及pikepdf的前端。PDFArranger在许多流行的GNU/Linux操作系统和MicrosoftWindows上都能良好地运行。它是使用GTK+和Python
- MapReduce 学习
chuanauc
mapreduce学习大数据
MapReduce的过程:mapshufflereduce其中,程序员需要实现的内容是:程序员手动实现Map任务的具体逻辑,将数据根据Map代码进行分割,返回(key,value)键值对然后这些(Key,Values)键值对先会被存放到磁盘,然后由MapReduce按照Key,进行排序,排序原则为,将同一个Key的键值对组织到一起,然后将同Key的键值对组,按照Key排序。而后将每个Map节点上找
- 1.线性神经网络--线性回归
温柔济沧海
深度学习神经网络线性回归python
1.1从零实现线性回归importrandomimporttorch#fromd2limporttorchasd2limportmatplotlib.pyplotaspltdeftrain_data_make(batch_size,X,y):num_examples=len(X)idx=list(range(num_examples))#生成0-999random.shuffle(idx)#样本需
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- 文本数据增强-同义词替换、随机交换、随机插入、随机删除
根据zhangy代码改写,主要针对千言问题匹配进行文本数据增强。依赖安装pipinstalljiebapipinstallsynonymseda.pyimportjiebaimportsynonymsimportrandomfromrandomimportshufflerandom.seed(2019)#停用词列表,默认使用哈工大停用词表f=open('stopwords/hit_stopword
- 头歌 MapReduce的编程开发-排序
敲代码的苦13
头歌mapreduce电脑大数据
任务描述本关任务:根据用户行为数据,编写MapReduce程序来统计出商品点击量排行。相关知识排序概述在MapReduce的Shuffle的过程中执行了三次排序,分别是:map中的溢写阶段:根据分区以及key进行快速排序。map中合并溢写文件:将同一分区的多个溢写文件进行归并排序,合成一个大的溢写文件。reduce输入阶段:将同一分区,来自不同maptask的数据文件进行归并排序。在MapRedu
- YOLO11改进|注意力机制篇|引入注意力机制Shuffle Attention
如果能为勤奋颁奖
YOLO11改进专栏YOLO
目录一、【ShuffleAttention】注意力机制1.1【ShuffleAttention】注意力介绍1.2【ShuffleAttention】核心代码二、添加【ShuffleAttention】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4三、yaml文件与运行3.1yaml文件3.2运行成功截图一、【ShuffleAttention】注意力机制1.1【Shuff
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- 【Flink】Flink自定义流分区器Partitioner、数据倾斜、CustomPartitionerWrapper
九师兄
flink大数据
1.概述20240118今日在群里看到一个人的流计算任务发生数据倾斜了。然后第一怀疑是上游不均匀,然后发现上游是均匀的。但是后面发现他这个分区器是一个新的shufflebybucket但是我在文章中:【Flink】FlinkUI上下游算子并发之间的数据传递方式Partitioner、流分区器记得好像没有这种类型。然后查看了一下,发现果然没有。
- 28 - ShuffleAttention模块
Leo Chaw
深度学习算法实现深度学习计算机视觉pytorch人工智能
论文《SA-NET:SHUFFLEATTENTIONFORDEEPCONVOLUTIONALNEURALNETWORKS》1、作用SA模块主要用于增强深度卷积网络在处理图像分类、对象检测和实例分割等任务时的性能。它通过在神经网络中引入注意力机制,使网络能够更加关注于图像中的重要特征,同时抑制不相关的信息。2、机制1、特征分组:SA模块首先将输入特征图沿通道维度分成多个子特征组,这样每个子特征组可以
- Spark Shuffle详解
zh_19995
spark大数据分布式数据仓库
Shuffle简介Shuffle描述着数据从maptask输出到reducetask输入的这段过程。shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。因为在分布式情况下,reducetask需要跨节点去拉取其它节点上的maptask结果。这一过程将会产生网络资源消耗和内存,磁
- 【STL】函数对象+常用算法
Cai junhao
C++算法c++stl考研笔记
文章目录STL-函数对象函数对象函数对象使用谓词一元谓词二元谓词内建函数对象算术仿函数关系仿函数STL-常用算法常用遍历算法for_eachtransform常用查找算法findfind_ifadjacent_findbinary_searchcountcount_if常用排序算法sortrandom_shufflemergereverse常用拷贝和替换算法copyreplacereplace_i
- Spark性能优化深度剖析:十大实战策略与案例解析
目录Spark核心优化原理资源调优实战技巧并行度优化指南广播变量高效应用数据倾斜终极解决方案Shuffle过程优化秘籍内存管理进阶技巧算子优化黄金法则真实案例深度解析全链路调优方案1.Spark核心优化原理Spark基于内存计算的特性使其比Hadoop快100倍,但实际性能取决于资源配置、数据倾斜处理、Shuffle优化等关键因素。核心优化公式:性能=资源效率×并行度×算法效率×数据均衡度内存计算
- SparkSQL 优化实操
社恐码农
sparksql
一、基础优化配置1.资源配置优化#提交Spark作业时的资源配置示例spark-submit\--masteryarn\--executor-memory8G\--executor-cores4\--num-executors10\--confspark.sql.shuffle.partitions=200\your_spark_app.py参数说明:executor-memory:每个Execu
- 突破协议限制:Python猴子补丁的动态魔力
钢铁男儿
流程Pythonpython网络开发语言
协议即契约,动态语言的可塑性让代码在运行时重生。问题根源:不可变序列的局限性协议缺失FrenchDeck实现了不可变序列协议(len和getitem),但缺少可变序列的关键方法setitem,导致无法就地修改元素位置。错误本质random.shuffle依赖元素赋值操作x[i]=x[j],抛出TypeError的根本原因是对象未实现可变容器协议。解决方案:猴子补丁技术剖析核心操作#定义元素赋值函数
- Python 接口:从协议到抽象基 类(使用猴子补丁在运行时实现协议)
钢铁男儿
流程Pythonpython开发语言
使用猴子补丁在运行时实现协议示例11-4中的FrenchDeck类有个重大缺陷:无法洗牌。几年前,第一次编写FrenchDeck示例时,我实现了shuffle方法。后来,我对Python风格有了深刻理解,我发现如果FrenchDeck实例的行为像序列,那么它就不需要shuffle方法,因为已经有random.shuffle函数可用,文档中说它的作用是“就地打乱序列x”(https://docs.p
- ResNet改进(45):结合通道混洗(ShuffleNet)的混合架构
点我头像干啥
ResNet改进【有效涨点!】机器学习人工智能深度学习算法
1.创新点分析今天我们将深入分析一个创新的卷积神经网络(CNN)实现,它巧妙地将经典的ResNet架构与新兴的通道混洗(ChannelShuffle)技术相结合。这个实现位于cnn_model.py文件中,展示了如何通过自定义模块来增强现有网络架构的性能。模型架构总览该实现定义了一个名为CustomResNet的类,它基于ResNet34架构,但在其中嵌入了自定义的ShuffleBlock模块。这
- 学习日记-day20-6.1
永日45670
学习
完成目标:知识点:1.集合_Collections集合工具类方法:staticbooleanaddAll(Collectionc,T...elements)->批量添加元素staticvoidshuffle(Listlist)->将集合中的元素顺序打乱staticvoidsort(Listlist)->将集合中的元素按照默认规则排序staticvoidsort(Listlist,Comparato
- yolov8添加注意力机制
LeonDL168
YOLOYOLOpython深度学习yolo数据集yolov8添加注意力机制yolov8/yolo11人工智能
在YOLOv8中添加注意力机制可以显著提升模型对关键特征的关注能力,从而提高检测精度。以下是几种主流注意力机制的实现方法和集成策略:1.注意力机制选择根据计算效率和效果,推荐以下几种注意力模块:CBAM:同时关注通道和空间维度,效果显著但计算开销较大。ECA:轻量级通道注意力,几乎不增加参数量。ShuffleAttention:高效的通道和空间注意力融合。SimAM:无需额外参数,基于神经元活跃度
- Hive的数据倾斜是什么?
安审若无
Hive性能优化及调优hivehadoop数据仓库
一、Hive数据倾斜的定义数据倾斜指在Hive分布式计算过程中,某一个或几个Task(如Map/Reduce任务)处理的数据量远大于其他Task,导致这些Task成为整个作业的性能瓶颈,甚至因内存不足而失败。数据倾斜通常发生在Shuffle阶段(如Join、GroupBy、Distinct等操作),本质是键分布不均匀导致的计算资源分配失衡。二、数据倾斜的原因1.数据源本身分布不均业务数据中某些键(
- spark- ResultStage 和 ShuffleMapStage介绍
大数据知识搬运工
spark学习spark大数据分布式
目录1.ShuffleMapStage(中间阶段)1.1作用1.2核心特性1.3示例2.ResultStage(最终结果阶段)2.1作用2.2核心特性2.3示例3.对比总结4.执行流程示例5.常见问题Q1:为什么需要区分两种Stage?**Q2:如何手动观察Stage划分?Q3:ShuffleMapStage的数据一定会落盘吗?在Spark的DAG调度模型中,Stage被划分为ResultStag
- spark shuffle的分区支持动态调整,而hive不支持
大数据知识搬运工
spark学习sparkhive大数据
根据Spark官方文档,SparkShuffle分区支持动态调整的核心原因在于其架构设计和执行模型的先进性:1.自适应查询执行(AQE)机制Spark3.0+引入的AQE特性允许在运行时动态优化执行计划,包括Shuffle分区调整:分区合并:通过spark.sql.adaptive.coalescePartitions参数,自动合并小分区(默认目标分区大小64MB)数据倾斜处理:自动将大分区拆分为
- spark 2.1 Stage and ResultStage and ShuffleMapStage
houzhizhen
sparkspark
Stage/***Astageisasetofparalleltasksallcomputingthesamefunctionthatneedtorunaspart*ofaSparkjob,whereallthetaskshavethesameshuffledependencies.EachDAGoftasksrun*bytheschedulerissplitupintostagesatthebo
- 机器学习dataloader中shuffle=True及使用随机种子控制随机性
行至568
机器学习实践机器学习人工智能python深度学习数据分析数据库
我们首先来看如下代码:train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)val_loader=Dataloader(val_dataset,batch_size=x=batch_size,shuffle=False)为什么train_loader的shuffle=True而val_loader的shuf
- Java Collections集合的工具类使用方法
揭开画皮
javawindowspython
importjava.util.*;publicclasstest1{publicstaticvoidmain(String[]args){//Collections集合的工具类使用方法/*1.Collections.addAll(list,l1,l2,l3...)可变参数添加对象2.Collections.shuffle(list)打乱集合中的元素顺序3.Collection.sort(list
- spark-shuffle 类型及其对比
大数据知识搬运工
spark学习spark大数据分布式
1.HashShuffle原理:将数据按照分区键进行哈希计算,将相同哈希值的数据发送到同一个Reducer中。特点:实现简单,适用于数据分布均匀的场景。但在数据分布不均匀时,容易导致某些Reducer处理的数据量过大,产生性能瓶颈。适用场景:当数据分布相对均匀时,可以使用HashShuffle。2.SortShuffle原理:在Map端对数据进行排序,然后按照排序后的顺序将数据发送到Reducer
- 面向对象编程实战:用C#模拟扑克牌游戏
钢铁男儿
C#图解教程游戏c#
程序中的对象世界在面向对象编程中,一个运行中的程序本质上是一组相互作用的类型对象集合。这些对象大多是类的实例,每个实例都代表程序中的特定实体,拥有自己的状态和行为。以扑克牌游戏为例,我们可以清晰地看到这种对象交互的生动体现:核心类设计Dealer类(庄家)职责:掌控游戏流程属性:当前牌堆状态玩家数量游戏阶段标识方法:Shuffle()-洗牌DealCards()-发牌ManageGameFlow(
- Spark中自定义分区器实现shuffle
自由幻想的人儿
sparkSpark自定义分区器PartitionerURL对象转换
Spark中实现了两种类型的分区函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangPartitioner。只对于key--value的的RDD才有Partitioner。决定shuffle后的分区输出数量。同时我们可以自定义Partitioner。importjava.net.URLimportorg.apache.spark.rdd.RDDimportorg.ap
- 【大数据、数据开发与数据分析面试题汇总(含答案)】
花架ギ
数分数开数据分析数据挖掘数据开发面试试题
在大数据、数据开发与数据分析领域的面试中,扎实掌握各类知识点至关重要。以下是精心整理的面试题,涵盖单选题和多选题,助你备考一臂之力。试题目录大数据、数据开发与数据分析高频面试题解析1.数据仓库分层架构设计2.维度建模与范式建模的区别3.MapReduce的Shuffle阶段详解4.Hive数据倾斜的优化方法5.Spark比MapReduce快的核心原因6.Flink的Watermark机制7.SQ
- MapReduce基本介绍
姬激薄
mapreduce大数据
核心思想分而治之:将大规模的数据处理任务分解成多个可以并行处理的子任务,然后将这些子任务分配到不同的计算节点上进行处理,最后将各个子任务的处理结果合并起来,得到最终的结果。工作流程Map阶段:输入数据被分割成多个小块,每个小块作为一个独立的任务由不同的Map任务处理。Map函数将输入数据转换为键值对形式,并对键值对进行处理,生成中间结果。Shuffle阶段:对Map阶段产生的中间结果进行分区、排序
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name