flink学习35:flinkSQL查询mysql

总览:    

import org.apache.flink.streaming.api.scala._

import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.EnvironmentSettings
import org.apache.flink.table.api.bridge.scala.{StreamTableEnvironment, tableConversions}

object sqlQueryTable {
  def main(args: Array[String]): Unit = {

    //create env
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    //set parallelism
    env.setParallelism(1)

    //env setting
    val envSettings = EnvironmentSettings.newInstance()
      .useBlinkPlanner()
      .inStreamingMode()
      .build()

    //create table env
    val tableEnv = StreamTableEnvironment.create(env, envSettings)

    //create flink table
    val flink_table_sql =
      """
        |create table student2_flink_table
        |(
        |  code varchar(20) null,
        |  name varchar(20) null,
        | score int null
        |)with(
        |'connector.type'='jdbc',
        |'connector.url'='jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf8&useSSL=true&serverTimezone=UTC',
        |'connector.table'='student2',
        |'connector.driver'='com.mysql.jdbc.Driver',
        |'connector.username'='root',
        |'connector.password'='123456'
        |)
        |""".stripMargin

    //execute create flink table sql
    tableEnv.executeSql(flink_table_sql)

    //register table
    val myStudent_Flink_Table = tableEnv.from("student2_flink_table")

    //query table
    val result = tableEnv.sqlQuery(s"select * from $myStudent_Flink_Table where code < 10")

    //print
    //result.toRetractStream[(String,String)].print()
    result.toAppendStream[(String,String,Int)].print()

    //create view
    tableEnv.createTemporaryView("student2_flink_view", myStudent_Flink_Table)

    //query use sql
    val querySQL =
      """
        |select code,
        |name,
        |sum(score) as total_score
        |from student2_flink_view
        |group by code, name
        |""".stripMargin

    //query
    val total_score_resut = tableEnv.sqlQuery(querySQL)

    //print
    total_score_resut.toRetractStream[(String,String,Int)].print("view-")

    //execute
    env.execute()

  }

}

toAppendStream 和  toRetractStream区别

toAppendStream 的输出结果

flink学习35:flinkSQL查询mysql_第1张图片

 

toRetractStream的输出结果

flink学习35:flinkSQL查询mysql_第2张图片

 感觉 toRetractStream支持更新

  从输出得结果看,每条结果前都会有true,当接收到新得数据时会更新原先得数据,并在原先得数据前面标记false,也就是失效或者作废得意思,从而得到新得数据,到此应该也能很清晰得区分 toAppendStream与toRetractStream的区别了

你可能感兴趣的:(Flink,flink,学习,mysql,flinkSQL)