TumblingProcess
package com.hehe.window;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
//每10秒滚动统计一次且不叠加
public class TumblingProcess {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> ds = env.socketTextStream("master", 8888);
SingleOutputStreamOperator<Tuple2<String, Integer>> sum = ds.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
for (String str : s.split(",")) {
collector.collect(Tuple2.of(str, 1));
}
}
}).keyBy(0).window(TumblingProcessingTimeWindows.of(Time.seconds(10))).sum(1);
sum.print().setParallelism(1);
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
TumblingEvent
package com.hehe.window;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
/**
* 业务场景:指定时间窗口内,统计事件/词汇的次数(热点更新等)
*/
public class TumblingEvent {
public static void main(String[] args) throws Exception {
//1.创建一个 flink steam 程序的执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); // 设置使用EventTime划分窗口
// 2. 创建数据源
SingleOutputStreamOperator<Tuple3<Long, String, Long>> input = env.fromElements(
Tuple3.of(1L, "hh", 1588491228L),
Tuple3.of(1L,"hh", 1588491229L),
Tuple3.of(1L, "66", 1588491238L),
Tuple3.of(1L, "yy", 1588491248L),
Tuple3.of(2L, "kk", 1588491258L),
Tuple3.of(2L, "java", 1588491268L),
Tuple3.of(2L,"java", 1588491270L)).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<Tuple3<Long,String, Long>>() {
@Override
public long extractAscendingTimestamp(Tuple3<Long,String, Long> element) {
return element.f2;
}
});
SingleOutputStreamOperator<Tuple2<String, Long>> map = input.map(new MapFunction<Tuple3<Long, String, Long>, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(Tuple3<Long, String, Long> longStringLongTuple3) {
return Tuple2.of(longStringLongTuple3.f1, longStringLongTuple3.f0);
}
});
SingleOutputStreamOperator<Tuple2<String, Long>> sum = map.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(10))).sum(1);
sum.print();
env.execute();
}
}
SlidingEvent
package com.hehe.window;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
//窗口大小为10,每5秒滑动一次,有重叠
public class SlidingProcess {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> stringDataStreamSource = env.socketTextStream("192.168.154.123", 8888);
SingleOutputStreamOperator<Tuple2<String, Integer>> tuple2SingleOutputStreamOperator = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
for (String str : s.split(",")) {
collector.collect(Tuple2.of(s, 1));
}
}
});
SingleOutputStreamOperator<Tuple2<String, Integer>> sum = tuple2SingleOutputStreamOperator.keyBy(0)
.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5))).sum(1);
sum.print();
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
SlidingProcess
package com.hehe.window;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
//窗口大小为10,每5秒滑动一次,有重叠
public class SlidingProcess {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> stringDataStreamSource = env.socketTextStream("192.168.154.123", 8888);
SingleOutputStreamOperator<Tuple2<String, Integer>> tuple2SingleOutputStreamOperator = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
for (String str : s.split(",")) {
collector.collect(Tuple2.of(s, 1));
}
}
});
SingleOutputStreamOperator<Tuple2<String, Integer>> sum = tuple2SingleOutputStreamOperator.keyBy(0)
.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5))).sum(1);
sum.print();
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}