- Java初学者:Java - 从新手到高效掌握的重点与难点
ProgramHan
java学习开发语言
很多人都想学习Java,但是又无从下手,难道Java只能到培训机构去花钱学吗?结合本人的经验,我认为不需要去培训机构花钱学也可以学习Java。首先,我们的需求很明确,是关于学习方法和如何将所学应用到工作中。可能我们希望文章详细且有实际指导意义,帮助他们高效学习Java。接下来,我得考虑文章的结构。通常,学习指南会包括基础知识、重点难点、实践应用等部分,这样我们可以有条理地进行学习。然后,如何将学习
- Java 移除List中的元素,这玩意讲究!
2401_86401508
javalistwindows
接着看。循环+remove(Objecto)/remove(Indexi):没错,我们可以配合循环,把list里面的“C”元素都移除。循环自然有分while循环和for循环(包含foreach)。先看foreach方式:不得行!切记!for(Stringstr:list){if(“C”.equals(str)){list.remove(str);}}代码看似没问题,但是在foreach使用list
- c语言%.4f,4f,4F法则是什么
满天乱走
c语言%.4f
4F法则是什么KISS是keepitSimpleStupid,即“使之简单笨拙”。是指广告创意的简洁原则,广告创意主题要突出,信息要凝练,无关紧要的要删去。电视广告镜头要破除繁琐,反映主信息;平面广告要讲究视觉流程,突显主题,越单纯越易为受众接受。4F是指优秀的...c语言中.4f是什么意思.4f是用于输出浮点数的格式字符串,输出时保留四位小数,输出宽度为10位,不足十位右侧补空格,超过十位按实际
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- 我让DeepSeek和ChatGPT互相聊聊两者的区别,大白话版笑死我了
前端点线面
chatgpt人工智能
大家好,我是纸鸢飞飞,今天跟大家一起做一件比较有意思的事情,让DeepSeek和ChatGPT互相聊聊两者的区别,话不多说,马上进入正题。第一版的针锋相对提示词:你是一名资深的自媒体博主,写过很多篇公众号文章爆款,现在写一篇关于DeepSeek和ChatGPT的不同,从而给普通人的启示的文章,注意该文章内容主要分成3个部分。DeepSeek的回答:DeepSeekvsChatGPT:普通人逆袭的启
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 每天一篇逻辑漏洞
不灭锦鲤
学习
前言:水一篇文章,今天也没有去挖洞内容:学了那么多了,还没有长进,是不是我的学习方法有问题但是到底哪里有问题呢,我又不知道,我好像好久没有总结了,应该写一篇日记,然后总结的一篇文章,然后把日记的内容丢里面,感觉就挺好了,就不用去找文章了好了就这样,进入正题好了,今天学会伪造了jsonp的xss,就是说是json格式的话,不是jsonp格式,可以尝试在url后面加上callback,看是否有返回值
- 电气小白的逆袭秘籍!西门子 PLCS7-SCL 编程手册来袭
白嫖党资源
#学习文档西门子PLCS7-SCL编程手册
电气小白的逆袭秘籍!西门子PLCS7-SCL编程手册来袭西门子PLCS7-SCL编程手册语言:简体中文下载地址:迅雷下载备注:作为一名电气初学者,怀揣着对自动化控制领域的热情,一头扎进西门子PLCS7编程的世界,却被SCL(结构化控制语言)编程的复杂语法和独特逻辑弄得晕头转向,是不是感觉满心沮丧?那些密密麻麻的代码,复杂的变量声明和数据结构,想要实现一个简单的控制功能都困难重重。别气馁,今天就给大
- 2020-10-09
weixin_45660257
笔记
java学习集合的目标1.会使用集合存储数据2.会遍历集合,把数据取出来3.掌握每种集合的特性集合框架的学习方法方式1.学习顶层:学习顶层接口,抽象类中共性的方法,所有的子类创建对象使用Collection接口定义的是所有的单列集合中共性的方法所有的单列集合都可以使用共性的方法没有带索引的方法继承:子类共性抽取形成父类(接口)List接口1.有序的集合(存储和取出元素顺序相同)2.允许存储重复的元
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- |网络安全|网络安全学习方法
网络安全King
web安全学习方法安全
1、先网络后安全很多初学者还没搞定网络看懂网络拓扑,就急着研究防火墙或VPN,其实这样就不清楚整个网络架构是如何安全演进的。正确的流程是:先通过网络协议和拓扑设计的学习,能独立搭建一个企业网/校园网,再引入局域网安全、防火墙、入侵检测、VPN等安全技术,使整个网络慢慢变得安全起来,这样才能看到整个网络安全的全貌。2、勤做实验勤抓包目前各大网络和安全厂商都有对应的模拟器,不再需要硬件支持就可以在电脑
- 速度超越DeepSeek!Le Chat 1100tok/s闪电回答,ChatGPT 4o和DeepSeek R1被秒杀?
LinkTime_Cloud
chatgptDeepSeekLeChat
2023年,当全球科技界还在ChatGPT引发的AI狂潮中沉浮时,一场来自欧洲的"静默革命"正悄然改变游戏规则。法国人工智能公司MistralAI推出的聊天机器人LeChat以"比ChatGPT快10倍"的惊人宣言震动业界,其背后承载的不仅是技术突破,更折射出全球AI版图重构的深层暗涌。一、法兰西奇迹:Mistral的逆袭密码在巴黎第十区一栋不起眼的办公楼里,Mistral团队用9个月时间创造了令
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 对DeepSeek-R1通过强化学习提升大型语言模型推理能力的技术原理解析
一只贴代码君
语言模型人工智能自然语言处理学习AI编程开发语言
强化学习基础•基本概念:强化学习是一种机器学习方法,智能体(模型)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略。•关键要素:包括环境(模型所处的推理任务场景)、状态(模型在推理过程中的当前情况,如已有的推理步骤、已知信息等)、动作(模型在当前状态下做出的推理决策,如选择何种推理方法、如何组织语言等)、奖励(根据模型的动作和结果给予的反馈,如推理正确给予正奖励,错误给予负奖励或无奖
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- deepseek:三个月备考高级系统架构师
wujiada001
AI-MODEL系统架构
一、备考总体规划(2025年2月11日-2025年5月)1.第一阶段:基础夯实(2025年2月11日-2025年3月10日)目标:快速掌握系统架构师考试的核心知识点。重点内容:计算机组成原理、操作系统、数据库原理。软件工程、设计模式、系统架构设计原则。网络通信、分布式系统、云计算、大数据等新兴技术。学习方法:阅读《系统架构设计师教程》或精简版教材,快速过一遍知识点。观看视频课程(如慕课网、腾讯课堂
- 聚类算法概念、分类、特点及应用场景【机器学习】【无监督学习】
飞火流星02027
云计算机器学习算法聚类人工智能聚类算法
概念机器学习聚类算法是一种无监督学习方法,旨在将数据集分割成不同的类或簇,使得同一簇内的数据对象相似性尽可能大,而不同簇之间的数据对象差异性也尽可能大。聚类算法广泛应用于新闻自动分组、用户分群、图像分割等领域。主要聚类算法及其特点层次聚类算法层次法(hierarchicalmethods)通过构建数据点之间的层次结构来进行聚类,可以是自底向上的凝聚方法或自顶向下的分裂方法。代表算法包括CU
- 土壤分析:土壤污染监测_(18).土壤污染监测与修复的最新进展
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤污染监测与修复的最新进展1.引言随着工业化和城市化的快速发展,土壤污染问题日益严重,对环境和人类健康构成了巨大威胁。传统的土壤污染监测方法依赖于实验室分析,耗时且成本高昂。近年来,计算机视觉技术在土壤污染监测领域的应用取得了显著进展,通过图像处理和机器学习方法,可以快速、准确地识别和监测土壤污染情况。本节将介绍计算机视觉技术在土壤污染监测与修复中的最新进展,包括数据采集、图像处理、特征提取、污
- 张驰咨询:六西格玛培训如何让离散制造业逆袭成王?
张驰课堂
六西格玛培训离散制造业
离散制造业,作为现代工业的重要组成部分,面临着日益激烈的市场竞争和不断变化的客户需求。为了保持竞争优势,企业不仅需要提高产品质量,降低成本,还需要优化生产流程,提高生产效率。而六西格玛培训作为一种系统化的质量管理方法,为离散制造业提供了实现这些目标的有效途径。六西格玛管理起源于20世纪80年代的摩托罗拉公司,是一种以追求卓越质量为核心的管理方法。它通过消除缺陷和减少变异,来提高顾客满意度。在离散制
- 大模型学习笔记 - LLM 对齐优化算法 DPO
JL_Jessie
学习笔记算法LLM
LLM-DPOLLM-DPODPO概述DPO目标函数推导DPO目标函数梯度的推导DPO概述大模型预训练是从大量语料中进行无监督学习,语料库内容混杂,训练的目标是语言模型损失,任务是nexttokenprediction,生成的token不可控,为了让大模型能生成符合人类偏好的答案(无毒无害等)一般都会进行微调和人类对齐,通常采用的方法是基于人类反馈的强化学习方法RLHF.RLHF是一个复杂且经常不
- 自监督的主要学习方法
一只波加猹~
自监督学习自监督
自监督学习是一种机器学习方法,其中模型从未标注的数据中学习生成标签,通常通过构造预训练任务或预测任务来从数据的内部结构中提取信息。它的核心目标是利用无监督的数据进行学习,从而在下游任务中更好地利用监督信号。自监督学习的主要方法可以分为以下三类:1.基于上下文(Context-based)方法基于上下文的方法通过预测数据的局部信息或不同部分之间的关系,来进行自监督学习。模型通过挖掘数据本身的结构或模
- Python近红外光谱分析与机器学习、深度学习方法融合实践技术
xiao5kou4chang6kai4
人工智能机器学习深度学习python机器学习深度学习近红外光谱
第一章Python入门基础【理论讲解与案例演示实操练习】1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)7、实操练习第
- DeepSeek:如何表达需求
小稻草打打打
AI相关人工智能
首先,跟AI打交道,就像跟一个超级聪明但有点“轴”的朋友聊天。你得清楚地告诉它你要啥,不然它可能会给你来个“脑筋急转弯”,结果让你哭笑不得。所以,表达需求这事儿,讲究的是一个“精准”和“策略”。那如何向AI表达需求呢,我们可以将需求分为五个类型1.决策需求:当AI变成你的“智囊团”特点:需要AI帮你权衡选项、评估风险,最后选出最优解。表达公式:目标+选项+评估标准适配策略:推理模型:要求AI进行逻
- 数据结构、算法与STL
刃神太酷啦
蓝桥杯C++组C++数据结构
数据结构、算法与STL顺序存储比如像手机的通讯录中的排序,就可以在内存中采用顺序存储的方式算法是可以没有输入的,但一定要有输出。没有输出的算法是没有意义的算法的学习方法跟数学相似运行代码的时间用时间复杂度去看时间复杂度只用看被执行次数最多(凭感觉看是哪个)的那个语句使用C++标准注意事项:1.编译器支持几几年的标准,我们就要去写符合标准下的代码2.C++标准可以向前兼容,但是不能向后兼容(eg:支
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla