Python单向双端链表

和单向单端链表不同, 除了头端,尾端也会维护一个指针(能够加快在尾端添加节点的速度).

由于有着对最后一个链结点的直接引用.所以双端链表比传统链表在某些方面要方便.比如在尾部插入一个链结点.双端链表可以进行直接操作

但传统链表只能通过next节点循环找到最后链结点操作.所以双端链表适合制造队列(先进先出).

双端链表可以插入表尾,但是仍然不能方便的删除表尾,因为我们没有方法快捷地获取倒数第二个链结点,双端链表没有逆向的指针,这一点就要靠双向链表来解决了

实现参考:

class Node(object):
    def __init__(self, value=None, next=None):   # 这里我们 root 节点默认都是 None,所以都给了默认值
        self.value = value
        self.next = next

    def __str__(self):
        """方便你打出来调试,复杂的代码可能需要断点调试"""
        return ''.format(self.value, self.next)

    __repr__ = __str__


class LinkedList(object):
    """ 链接表 ADT
    [root] -> [node0] -> [node1] -> [node2]
    """

    def __init__(self, maxsize=None):
        """
        :param maxsize: int or None, 如果是 None,无限扩充
        """
        self.maxsize = maxsize
        self.root = Node()     # 默认 root 节点指向 None
        self.tailnode = None
        self.length = 0

    def __len__(self):
        return self.length

    def append(self, value):    # O(1)
        if self.maxsize is not None and len(self) >= self.maxsize:
            raise Exception('LinkedList is Full')
        node = Node(value)    # 构造节点
        tailnode = self.tailnode
        if tailnode is None:    # 还没有 append 过,length = 0, 追加到 root 后
            self.root.next = node
        else:     # 否则追加到最后一个节点的后边,并更新最后一个节点是 append 的节点
            tailnode.next = node
        self.tailnode = node
        self.length += 1

    def appendleft(self, value):
        if self.maxsize is not None and len(self) >= self.maxsize:
            raise Exception('LinkedList is Full')
        node = Node(value)
        if self.tailnode is None:  # 如果原链表为空,插入第一个元素需要设置 tailnode
            self.tailnode = node

        headnode = self.root.next
        self.root.next = node
        node.next = headnode
        self.length += 1

    def __iter__(self):
        for node in self.iter_node():
            yield node.value

    def iter_node(self):
        """遍历 从 head 节点到 tail 节点"""
        curnode = self.root.next
        while curnode is not self.tailnode:    # 从第一个节点开始遍历
            yield curnode
            curnode = curnode.next    # 移动到下一个节点
        if curnode is not None:
            yield curnode

    def remove(self, value):    # O(n)
        """ 删除包含值的一个节点,将其前一个节点的 next 指向被查询节点的下一个即可

        :param value:
        """
        prevnode = self.root    #
        for curnode in self.iter_node():
            if curnode.value == value:
                prevnode.next = curnode.next
                if curnode is self.tailnode:  # NOTE: 注意更新 tailnode
                    if prevnode is self.root:
                        self.tailnode = None
                    else:
                        self.tailnode = prevnode
                del curnode
                self.length -= 1
                return 1  # 表明删除成功
            else:
                prevnode = curnode
        return -1  # 表明删除失败

    def find(self, value):    # O(n)
        """ 查找一个节点,返回序号,从 0 开始

        :param value:
        """
        index = 0
        for node in self.iter_node():   # 我们定义了 __iter__,这里就可以用 for 遍历它了
            if node.value == value:
                return index
            index += 1
        return -1    # 没找到

    def popleft(self):    # O(1)
        """ 删除第一个链表节点
        """
        if self.root.next is None:
            raise Exception('pop from empty LinkedList')
        headnode = self.root.next
        self.root.next = headnode.next
        self.length -= 1
        value = headnode.value

        if self.tailnode is headnode:   # 勘误:增加单节点删除 tailnode 处理
            self.tailnode = None
        del headnode
        return value

    def clear(self):
        for node in self.iter_node():
            del node
        self.root.next = None
        self.length = 0
        self.tailnode = None

    def reverse(self):
        """反转链表"""
        curnode = self.root.next
        self.tailnode = curnode  # 记得更新 tailnode,多了这个属性处理起来经常忘记
        prevnode = None

        while curnode:
            nextnode = curnode.next
            curnode.next = prevnode

            if nextnode is None:
                self.root.next = curnode

            prevnode = curnode
            curnode = nextnode


def test_linked_list():
    ll = LinkedList()

    ll.append(0)
    ll.append(1)
    ll.append(2)
    ll.append(3)
    print(ll)

    assert len(ll) == 4
    assert ll.find(2) == 2
    assert ll.find(-1) == -1

    assert ll.remove(0) == 1
    assert ll.remove(10) == -1
    assert ll.remove(2) == 1
    assert len(ll) == 2
    assert list(ll) == [1, 3]
    assert ll.find(0) == -1

    ll.appendleft(0)
    assert list(ll) == [0, 1, 3]
    assert len(ll) == 3

    headvalue = ll.popleft()
    assert headvalue == 0
    assert len(ll) == 2
    assert list(ll) == [1, 3]

    assert ll.popleft() == 1
    assert list(ll) == [3]
    ll.popleft()
    assert len(ll) == 0
    assert ll.tailnode is None

    ll.clear()
    assert len(ll) == 0
    assert list(ll) == []


def test_linked_list_remove():
    ll = LinkedList()
    ll.append(3)
    ll.append(4)
    ll.append(5)
    ll.append(6)
    ll.append(7)
    ll.remove(7)
    print(list(ll))

def test_single_node():
    # https://github.com/PegasusWang/python_data_structures_and_algorithms/pull/21
    ll = LinkedList()
    ll.append(0)
    ll.remove(0)
    ll.appendleft(1)
    assert list(ll) == [1]

def test_linked_list_reverse():
    ll = LinkedList()
    n = 10
    for i in range(n):
        ll.append(i)
    ll.reverse()
    assert list(ll) == list(reversed(range(n)))


def test_linked_list_append():
    ll = LinkedList()
    ll.appendleft(1)
    ll.append(2)
    assert list(ll) == [1, 2]


if __name__ == '__main__':
    test_single_node()
    test_linked_list()
    test_linked_list_append()
    test_linked_list_reverse()

你可能感兴趣的:(Python单向双端链表)