- 1 Introduction
- 2
GDCRNATools
package installation - 3 Quick start
- 3.1 Data preparation
- 3.1.1 Normalization of HTSeq-Counts data
- 3.1.2 Parse metadata
- 3.2 ceRNAs network analysis
- 3.2.1 Identification of differentially expressed genes (DEGs)
- 3.2.2 ceRNAs network analysis of DEGs
- 3.2.3 Export ceRNAs network to Cytoscape
- 3.1 Data preparation
- 4 Case study: TCGA-CHOL
- 4.1 Data download
- 4.1.1 Automatic download
- 4.1.2 Manual download
- 4.2 Data organization and DE analysis
- 4.2.1 Parse metadata
- 4.2.2 Merge raw counts data
- 4.2.3 TMM normalization and voom transformation
- 4.2.4 Differential gene expression analysis
- 4.3 Competing endogenous RNAs network analysis
- 4.3.1 Hypergeometric test
- 4.3.2 Pearson correlation analysis
- 4.3.3 Regulation pattern analysis
- 4.3.4 ceRNAs network analysis
- 4.3.5 Network visulization in Cytoscape
- 4.3.6 Correlation plot on a local webpage
- 4.4 Other downstream analyses
- 4.4.1 Univariate survival analysis
- 4.4.2 Functional enrichment analysis
- 4.1 Data download
- 5 sessionInfo
- 6 References
1 Introduction
GDCRNATools
is an R package which provides a standard, easy-to-use and comprehensive pipeline for downloading, organizing, and integrative analyzing RNA expression data in the GDC portal with an emphasis on deciphering the lncRNA-mRNA related ceRNAs regulatory network in cancer.
Competing endogenous RNAs (ceRNAs) are RNAs that indirectly regulate other transcripts by competing for shared miRNAs. Although only a fraction of long non-coding RNAs has been functionally characterized, increasing evidences show that lncRNAs harboring multiple miRNA response elements (MREs) can act as ceRNAs to sequester miRNA activity and thus reduce the inhibition of miRNA on its targets. Deregulation of ceRNAs network may lead to human diseases.
The Genomic Data Commons (GDC) maintains standardized genomic, clinical, and biospecimen data from National Cancer Institute (NCI) programs including The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research To Generate Effective Treatments (TARGET), It also accepts high quality datasets from non-NCI supported cancer research programs, such as genomic data from the Foundation Medicine.
Many analyses can be perfomed using GDCRNATools, including differential gene expression analysis (limma(???), edgeR(???), and DESeq2(???)), univariate survival analysis (CoxPH and KM), competing endogenous RNA network analysis (hypergeometric test, Pearson correlation analysis, regulation similarity analysis, sensitivity Pearson partial correlation(???)), and functional enrichment analysis(GO, KEGG, DO). Besides some routine visualization methods such as volcano plot, scatter plot, and bubble plot, etc., three simple shiny apps are developed in GDCRNATools allowing users visualize the results on a local webpage. All the figures are plotted based on ggplot2 package unless otherwise specified.
This user-friendly package allows researchers perform the analysis by simply running a few functions and integrate their own pipelines such as molecular subtype classification, weighted correlation network analysis (WGCNA)(???), and TF-miRNA co-regulatory network analysis, etc. into the workflow easily. This could open a door to accelerate the study of crosstalk among different classes of RNAs and their regulatory relationships in cancer.
2 GDCRNATools
package installation
The R software for running GDCRNATools
can be downloaded from The Comprehensive R Archive Network (CRAN). The GDCRNATools
package can be installed from Bioconductor.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
#BiocManager::install("GDCRNATools")
library(GDCRNATools)
3 Quick start
In GDCRNATools
, some functions are built for users to download and process GDC data efficiently. Users can also use their own data that is processed by other tools such as the UCSC Xena GDC hub, TCGAbiolinks(???), or TCGA-Assembler(???), etc.
Here we use a small dataset to show the most basic steps for ceRNAs network analysis. More detailed instruction of each step is in the Case Study section.
3.1 Data preparation
3.1.1 Normalization of HTSeq-Counts data
library(DT)
### load RNA counts data
data(rnaCounts)
### load miRNAs counts data
data(mirCounts)
####### Normalization of RNAseq data #######
rnaExpr <- gdcVoomNormalization(counts = rnaCounts, filter = FALSE)
####### Normalization of miRNAs data #######
mirExpr <- gdcVoomNormalization(counts = mirCounts, filter = FALSE)
3.1.2 Parse metadata
####### Parse and filter RNAseq metadata #######
metaMatrix.RNA <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'RNAseq',
write.meta = FALSE)
metaMatrix.RNA <- gdcFilterDuplicate(metaMatrix.RNA)
metaMatrix.RNA <- gdcFilterSampleType(metaMatrix.RNA)
metaMatrix.RNA[1:5,]
## file_name
## TCGA-3X-AAV9-01A 725eaa94-5221-4c22-bced-0c36c10c2c3b.htseq.counts.gz
## TCGA-3X-AAVA-01A b6a2c03a-c8ad-41e9-8a19-8f5ac53cae9f.htseq.counts.gz
## TCGA-3X-AAVB-01A c2765336-c804-4fd2-b45a-e75af2a91954.htseq.counts.gz
## TCGA-3X-AAVC-01A 8b20cba8-9fd5-4d56-bd02-c6f4a62767e8.htseq.counts.gz
## TCGA-3X-AAVE-01A 4082f7d5-5656-476a-9aaf-36f7cea0ac55.htseq.counts.gz
## file_id patient
## TCGA-3X-AAV9-01A 85bc7f81-51fb-4446-b12d-8741eef4acee TCGA-3X-AAV9
## TCGA-3X-AAVA-01A 42b8d463-6209-4ea0-bb01-8023a1302fa0 TCGA-3X-AAVA
## TCGA-3X-AAVB-01A 6e2031e9-df75-48df-b094-8dc6be89bf8b TCGA-3X-AAVB
## TCGA-3X-AAVC-01A 19e8fd21-f6c8-49b0-aa76-109eef46c2e9 TCGA-3X-AAVC
## TCGA-3X-AAVE-01A 1ace0df3-9837-467e-85de-c938efda8fc8 TCGA-3X-AAVE
## sample submitter_id entity_submitter_id
## TCGA-3X-AAV9-01A TCGA-3X-AAV9-01 TCGA-3X-AAV9-01A TCGA-3X-AAV9-01A-72R-A41I-07
## TCGA-3X-AAVA-01A TCGA-3X-AAVA-01 TCGA-3X-AAVA-01A TCGA-3X-AAVA-01A-11R-A41I-07
## TCGA-3X-AAVB-01A TCGA-3X-AAVB-01 TCGA-3X-AAVB-01A TCGA-3X-AAVB-01A-31R-A41I-07
## TCGA-3X-AAVC-01A TCGA-3X-AAVC-01 TCGA-3X-AAVC-01A TCGA-3X-AAVC-01A-21R-A41I-07
## TCGA-3X-AAVE-01A TCGA-3X-AAVE-01 TCGA-3X-AAVE-01A TCGA-3X-AAVE-01A-11R-A41I-07
## sample_type gender age_at_diagnosis tumor_stage tumor_grade
## TCGA-3X-AAV9-01A PrimaryTumor male 26349 stagei
## TCGA-3X-AAVA-01A PrimaryTumor female 18303 stageii
## TCGA-3X-AAVB-01A PrimaryTumor female 25819 stageivb
## TCGA-3X-AAVC-01A PrimaryTumor female 26493 stagei
## TCGA-3X-AAVE-01A PrimaryTumor male 21943 stageii
## days_to_death days_to_last_follow_up vital_status project_id
## TCGA-3X-AAV9-01A 339 NA Dead TCGA-CHOL
## TCGA-3X-AAVA-01A 445 NA Dead TCGA-CHOL
## TCGA-3X-AAVB-01A NA 402 Alive TCGA-CHOL
## TCGA-3X-AAVC-01A NA 709 Alive TCGA-CHOL
## TCGA-3X-AAVE-01A NA 650 Alive TCGA-CHOL
3.2 ceRNAs network analysis
3.2.1 Identification of differentially expressed genes (DEGs)
DEGAll <- gdcDEAnalysis(counts = rnaCounts,
group = metaMatrix.RNA$sample_type,
comparison = 'PrimaryTumor-SolidTissueNormal',
method = 'limma')
DEGAll[1:5,]
## symbol group logFC AveExpr t
## ENSG00000143257 NR1I3 protein_coding -6.916825 7.023129 -17.29086
## ENSG00000205707 ETFRF1 protein_coding -2.492182 9.515997 -16.06753
## ENSG00000134532 SOX5 protein_coding -4.871118 6.228227 -15.03589
## ENSG00000141338 ABCA8 protein_coding -5.653794 7.520581 -14.86069
## ENSG00000066583 ISOC1 protein_coding -2.370131 10.466194 -14.56532
## PValue FDR B
## ENSG00000143257 4.244355e-22 2.419282e-19 40.04288
## ENSG00000205707 8.353256e-21 2.380678e-18 37.19751
## ENSG00000134532 1.168746e-19 2.220617e-17 34.49828
## ENSG00000141338 1.851519e-19 2.638414e-17 34.11581
## ENSG00000066583 4.053959e-19 4.621513e-17 33.35640
### All DEGs
deALL <- gdcDEReport(deg = DEGAll, gene.type = 'all')
### DE long-noncoding
deLNC <- gdcDEReport(deg = DEGAll, gene.type = 'long_non_coding')
### DE protein coding genes
dePC <- gdcDEReport(deg = DEGAll, gene.type = 'protein_coding')
3.2.2 ceRNAs network analysis of DEGs
ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
pc = rownames(dePC),
lnc.targets = 'starBase',
pc.targets = 'starBase',
rna.expr = rnaExpr,
mir.expr = mirExpr)
## Step 1/3: Hypergenometric test done !
## Step 2/3: Correlation analysis done !
## Step 3/3: Regulation pattern analysis done !
ceOutput[1:5,]
## lncRNAs Genes Counts listTotal popHits popTotal
## 1 ENSG00000234456 ENSG00000107864 2 2 95 277
## 2 ENSG00000234456 ENSG00000135111 2 2 24 277
## 3 ENSG00000234456 ENSG00000165672 2 2 8 277
## 4 ENSG00000234456 ENSG00000100934 2 2 20 277
## 5 ENSG00000234456 ENSG00000117500 2 2 28 277
## foldEnrichment hyperPValue miRNAs
## 1 2.91578947368421 0.116805315753675 hsa-miR-374b-5p,hsa-miR-374a-5p
## 2 11.5416666666667 0.0072202166064982 hsa-miR-374b-5p,hsa-miR-374a-5p
## 3 34.625 0.000732485742688222 hsa-miR-374b-5p,hsa-miR-374a-5p
## 4 13.85 0.00497043896824151 hsa-miR-374b-5p,hsa-miR-374a-5p
## 5 9.89285714285714 0.00988855752629099 hsa-miR-374b-5p,hsa-miR-374a-5p
## cor corPValue regSim sppc
## 1 0.6737432 1.963579e-07 0.3481546 -7.963190e-03
## 2 0.6467307 7.943945e-07 0.8878253 6.185822e-04
## 3 0.4626116 6.880428e-04 0.4289101 7.057739e-05
## 4 0.7080350 2.665317e-08 0.3733481 -8.430679e-03
## 5 0.6195919 2.836509e-06 0.4051700 -1.232672e-03
3.2.3 Export ceRNAs network to Cytoscape
ceOutput2 <- ceOutput[ceOutput$hyperPValue<0.01
& ceOutput$corPValue<0.01 & ceOutput$regSim != 0,]
### Export edges
edges <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'edges')
edges[1:5,]
## fromNode toNode altNode1Name
## 1 ENSG00000234456 hsa-miR-374b-5p MAGI2-AS3
## 2 ENSG00000234456 hsa-miR-374a-5p MAGI2-AS3
## 47 ENSG00000234741 hsa-miR-137 GAS5
## 50 ENSG00000255717 hsa-miR-377-3p SNHG1
## 51 ENSG00000255717 hsa-miR-421 SNHG1
### Export nodes
nodes <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'nodes')
nodes[1:5,]
## gene symbol type numInteractions
## 1 ENSG00000003989 SLC7A2 pc 2
## 2 ENSG00000004799 PDK4 pc 5
## 3 ENSG00000021826 CPS1 pc 3
## 4 ENSG00000047634 SCML1 pc 3
## 5 ENSG00000049246 PER3 pc 3
4 Case study: TCGA-CHOL
In this section, we use the whole datasets of TCGA-CHOL project as an example to illustrate how GDCRNATools
works in detail.
4.1 Data download
Two methods are provided for downloading Gene Expression Quantification (HTSeq-Counts), Isoform Expression Quantification (BCGSC miRNA Profiling), and Clinical (Clinical Supplement) data:
4.1.1 Automatic download
To provide users a convenient method for data download, by default, we used the API method developed in the GenomicDataCommons
package to download data automatically by specifying data.type
and project.id
arguments. An alternative method using the gdc-client
for automatic download is also provided in case that the API method fails.
project <- 'TCGA-CHOL'
rnadir <- paste(project, 'RNAseq', sep='/')
mirdir <- paste(project, 'miRNAs', sep='/')
####### Download RNAseq data #######
gdcRNADownload(project.id = 'TCGA-CHOL',
data.type = 'RNAseq',
write.manifest = FALSE,
directory = rnadir)
####### Download miRNAs data #######
gdcRNADownload(project.id = 'TCGA-CHOL',
data.type = 'miRNAs',
write.manifest = FALSE,
directory = mirdir)
4.1.2 Manual download
Users can also download data manually by providing the manifest file that is downloaded from the GDC cart
Step1: Download GDC Data Transfer Tool on the GDC website
Step2: Add data to the GDC cart, then download manifest file and metadata of the cart
Step3: Download data using gdcRNADownload()
function by providing the manifest file
4.2 Data organization and DE analysis
4.2.1 Parse metadata
Metadata can be parsed by either providing the metadata file (.json) that is downloaded in the data download step, or specifying the project.id
and data.type
in gdcParseMetadata()
function to obtain information of data in the manifest file to facilitate data organization and basic clinical information of patients such as age, stage and gender, etc. for data analysis.
Only one sample would be kept if the sample had been sequenced more than once by gdcFilterDuplicate()
. Samples that are neither Primary Tumor (code: 01) nor Solid Tissue Normal (code: 11) would be filtered out by gdcFilterSampleType()
####### Parse RNAseq metadata #######
metaMatrix.RNA <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'RNAseq',
write.meta = FALSE)
####### Filter duplicated samples in RNAseq metadata #######
metaMatrix.RNA <- gdcFilterDuplicate(metaMatrix.RNA)
####### Filter non-Primary Tumor and non-Solid Tissue Normal samples in RNAseq metadata #######
metaMatrix.RNA <- gdcFilterSampleType(metaMatrix.RNA)
####### Parse miRNAs metadata #######
metaMatrix.MIR <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'miRNAs',
write.meta = FALSE)
####### Filter duplicated samples in miRNAs metadata #######
metaMatrix.MIR <- gdcFilterDuplicate(metaMatrix.MIR)
####### Filter non-Primary Tumor and non-Solid Tissue Normal samples in miRNAs metadata #######
metaMatrix.MIR <- gdcFilterSampleType(metaMatrix.MIR)
4.2.2 Merge raw counts data
gdcRNAMerge()
merges raw counts data of RNAseq to a single expression matrix with rows are Ensembl id and columns are samples. Total read counts for 5p and 3p strands of miRNAs can be processed from isoform quantification files and then merged to a single expression matrix with rows are miRBase v21 identifiers and columns are samples.
####### Merge RNAseq data #######
rnaCounts <- gdcRNAMerge(metadata = metaMatrix.RNA,
path = rnadir,
data.type = 'RNAseq')
####### Merge miRNAs data #######
mirCounts <- gdcRNAMerge(metadata = metaMatrix.MIR,
path = mirdir,
data.type = 'miRNAs')
4.2.3 TMM normalization and voom transformation
By running gdcVoomNormalization()
function, raw counts data would be normalized by TMM method implemented in edgeR(???) and further transformed by the voom method provided in limma(???). Low expression genes (logcpm < 1 in more than half of the samples) will be filtered out by default. All the genes can be kept by setting filter=TRUE
in the gdcVoomNormalization()
.
####### Normalization of RNAseq data #######
rnaExpr <- gdcVoomNormalization(counts = rnaCounts, filter = FALSE)
####### Normalization of miRNAs data #######
mirExpr <- gdcVoomNormalization(counts = mirCounts, filter = FALSE)
4.2.4 Differential gene expression analysis
Usually, people are interested in genes that are differentially expressed between different groups (eg. Primary Tumor vs. Solid Tissue Normal). gdcDEAnalysis()
, a convenience wrapper, provides three widely used methods limma(???), edgeR(???), and DESeq2(???) to identify differentially expressed genes (DEGs) or miRNAs between any two groups defined by users. Note that DESeq2(???) maybe slow with a single core. Multiple cores can be specified with the nCore
argument if DESeq2(???) is in use. Users are encouraged to consult the vignette of each method for more detailed information.
DEGAll <- gdcDEAnalysis(counts = rnaCounts,
group = metaMatrix.RNA$sample_type,
comparison = 'PrimaryTumor-SolidTissueNormal',
method = 'limma')
All DEGs, DE long non-coding genes, DE protein coding genes and DE miRNAs could be reported separately by setting geneType
argument in gdcDEReport()
. Gene symbols and biotypes based on the Ensembl 90 annotation are reported in the output.
data(DEGAll)
### All DEGs
deALL <- gdcDEReport(deg = DEGAll, gene.type = 'all')
### DE long-noncoding
deLNC <- gdcDEReport(deg = DEGAll, gene.type = 'long_non_coding')
### DE protein coding genes
dePC <- gdcDEReport(deg = DEGAll, gene.type = 'protein_coding')
4.3 Competing endogenous RNAs network analysis
Three criteria are used to determine the competing endogenous interactions between lncRNA-mRNA pairs:
- The lncRNA and mRNA must share significant number of miRNAs
- Expression of lncRNA and mRNA must be positively correlated
- Those common miRNAs should play similar roles in regulating the expression of lncRNA and mRNA
4.3.1 Hypergeometric test
Hypergenometric test is performed to test whether a lncRNA and mRNA share many miRNAs significantly.
A newly developed algorithm spongeScanis used to predict MREs in lncRNAs acting as ceRNAs. Databases such as starBase v2.0, miRcode and mirTarBase release 7.0 are used to collect predicted and experimentally validated miRNA-mRNA and/or miRNA-lncRNA interactions. Gene IDs in these databases are updated to the latest Ensembl 90 annotation of human genome and miRNAs names are updated to the new release miRBase 21 identifiers. Users can also provide their own datasets of miRNA-lncRNA and miRNA-mRNA interactions.
The figure and equation below illustrate how the hypergeometric test works
p=1−∑k=0m(Kk)(N−Kn−k)(Nn)
here m is the number of shared miRNAs, N is the total number of miRNAs in the database, n is the number of miRNAs targeting the lncRNA, K is the number of miRNAs targeting the protein coding gene.
4.3.2 Pearson correlation analysis
Pearson correlation coefficient is a measure of the strength of a linear association between two variables. As we all know, miRNAs are negative regulators of gene expression. If more common miRNAs are occupied by a lncRNA, less of them will bind to the target mRNA, thus increasing the expression level of mRNA. So expression of the lncRNA and mRNA in a ceRNA pair should be positively correlated.
4.3.3 Regulation pattern analysis
Two methods are used to measure the regulatory role of miRNAs on the lncRNA and mRNA:
- Regulation similarity
We defined a measurement regulation similarity score to check the similarity between miRNAs-lncRNA expression correlation and miRNAs-mRNA expression correlation.
Regulation similarity score=1−1M∑k=1M[|corr(mk,l)−corr(mk,g)||corr(mk,l)|+|corr(mk,g)|]M
where M is the total number of shared miRNAs, k is the kth shared miRNAs, corr(mk,l) and corr(mk,g) represents the Pearson correlation between the kth miRNA and lncRNA, the kth miRNA and mRNA, respectively
- Sensitivity correlation
Sensitivity correlation is defined by Paci et al.to measure if the correlation between a lncRNA and mRNA is mediated by a miRNA in the lncRNA-miRNA-mRNA triplet. We take average of all triplets of a lncRNA-mRNA pair and their shared miRNAs as the sensitivity correlation between a selected lncRNA and mRNA.
Sensitivity correlation=corr(l,g)−1M∑k=1Mcorr(l,g)−corr(mk,l)corr(mk,g)1−corr(mk,l)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾√1−corr(mk,g)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
where M is the total number of shared miRNAs, k is the kth shared miRNAs, corr(l,g), corr(mk,l) and corr(mk,g) represents the Pearson correlation between the long non-coding RNA and the protein coding gene, the kth miRNA and lncRNA, the kth miRNA and mRNA, respectively
4.3.4 ceRNAs network analysis
The hypergeometric test of shared miRNAs, expression correlation analysis of lncRNA-mRNA pair, and regulation pattern analysis of shared miRNAs are all implemented in the gdcCEAnalysis()
function.
4.3.4.1 ceRNAs network analysis using internal databases
Users can use the internally incoporated databases of miRNA-mRNA (starBase v2.0, miRcode, and mirTarBase v7.0) and miRNA-lncRNA (starBase v2.0, miRcode, spongeScan) interactions to perform the ceRNAs network analysis.
ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
pc = rownames(dePC),
lnc.targets = 'starBase',
pc.targets = 'starBase',
rna.expr = rnaExpr,
mir.expr = mirExpr)
4.3.4.2 ceRNAs network analysis using user-provided datasets
gdcCEAnalysis()
can also take user-provided miRNA-mRNA and miRNA-lncRNA interaction datasets, such as miRNA-target interactions predicted by TargetScan, miRanda, and Diana Tools, etc. for the ceRNAs network analysis.
### load miRNA-lncRNA interactions
data(lncTarget)
### load miRNA-mRNA interactions
data(pcTarget)
pcTarget[1:3]
## $ENSG00000138829
## [1] "hsa-miR-200b-3p" "hsa-miR-429" "hsa-miR-101-3p" "hsa-miR-137"
## [5] "hsa-miR-9-5p" "hsa-miR-139-5p" "hsa-miR-200c-3p" "hsa-miR-136-5p"
## [9] "hsa-miR-494-3p" "hsa-miR-495-3p" "hsa-miR-154-5p" "hsa-miR-410-3p"
## [13] "hsa-miR-211-5p" "hsa-miR-140-5p" "hsa-miR-22-3p" "hsa-miR-33b-5p"
## [17] "hsa-miR-144-3p" "hsa-miR-133a-3p" "hsa-miR-23a-3p" "hsa-miR-217"
## [21] "hsa-miR-33a-5p" "hsa-miR-218-5p" "hsa-miR-133b" "hsa-miR-876-5p"
## [25] "hsa-miR-204-5p" "hsa-miR-23b-3p" "hsa-miR-23c"
##
## $ENSG00000113615
## [1] "hsa-miR-200b-3p" "hsa-miR-200a-3p" "hsa-miR-429" "hsa-miR-30e-5p"
## [5] "hsa-miR-30c-5p" "hsa-miR-92b-3p" "hsa-miR-199a-5p" "hsa-miR-181b-5p"
## [9] "hsa-miR-181a-5p" "hsa-miR-107" "hsa-miR-200c-3p" "hsa-miR-141-3p"
## [13] "hsa-miR-26a-5p" "hsa-miR-16-5p" "hsa-miR-15a-5p" "hsa-miR-1297"
## [17] "hsa-miR-92a-3p" "hsa-miR-136-5p" "hsa-miR-300" "hsa-miR-381-3p"
## [21] "hsa-miR-539-5p" "hsa-miR-7-5p" "hsa-miR-132-3p" "hsa-miR-212-3p"
## [25] "hsa-miR-195-5p" "hsa-miR-497-5p" "hsa-miR-144-3p" "hsa-miR-27a-3p"
## [29] "hsa-miR-23a-3p" "hsa-miR-181c-5p" "hsa-miR-181d-5p" "hsa-miR-371a-5p"
## [33] "hsa-miR-128-3p" "hsa-miR-26b-5p" "hsa-miR-103a-3p" "hsa-miR-15b-5p"
## [37] "hsa-miR-367-3p" "hsa-miR-30a-5p" "hsa-miR-653-5p" "hsa-miR-25-3p"
## [41] "hsa-miR-182-5p" "hsa-miR-183-5p" "hsa-miR-490-3p" "hsa-miR-30b-5p"
## [45] "hsa-miR-30d-5p" "hsa-miR-31-5p" "hsa-miR-23b-3p" "hsa-miR-27b-3p"
## [49] "hsa-miR-32-5p" "hsa-miR-199b-5p" "hsa-miR-23c" "hsa-miR-374b-5p"
## [53] "hsa-miR-374a-5p" "hsa-miR-363-3p" "hsa-miR-424-5p"
##
## $ENSG00000112144
## [1] "hsa-miR-200b-3p" "hsa-miR-429" "hsa-miR-30e-5p" "hsa-miR-30c-5p"
## [5] "hsa-miR-101-3p" "hsa-miR-202-3p" "hsa-miR-139-5p" "hsa-miR-200c-3p"
## [9] "hsa-miR-26a-5p" "hsa-miR-1297" "hsa-miR-543" "hsa-miR-300"
## [13] "hsa-miR-382-5p" "hsa-miR-410-3p" "hsa-miR-144-3p" "hsa-miR-23a-3p"
## [17] "hsa-miR-217" "hsa-miR-26b-5p" "hsa-miR-218-5p" "hsa-miR-367-3p"
## [21] "hsa-miR-30a-5p" "hsa-miR-383-5p" "hsa-miR-30b-5p" "hsa-miR-30d-5p"
## [25] "hsa-miR-23b-3p" "hsa-miR-374b-5p" "hsa-miR-374a-5p" "hsa-miR-448"
ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
pc = rownames(dePC),
lnc.targets = lncTarget,
pc.targets = pcTarget,
rna.expr = rnaExpr,
mir.expr = mirExpr)
4.3.5 Network visulization in Cytoscape
lncRNA-miRNA-mRNA interactions can be reported by the gdcExportNetwork()
and visualized in Cytoscape. edges
should be imported as network and nodes
should be imported as feature table.
ceOutput2 <- ceOutput[ceOutput$hyperPValue<0.01 &
ceOutput$corPValue<0.01 & ceOutput$regSim != 0,]
edges <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'edges')
nodes <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'nodes')
write.table(edges, file='edges.txt', sep='\t', quote=F)
write.table(nodes, file='nodes.txt', sep='\t', quote=F)
4.3.6 Correlation plot on a local webpage
shinyCorPlot()
, a interactive plot function based on shiny
package, can be easily operated by just clicking the genes in each drop down box (in the GUI window). By running shinyCorPlot()
function, a local webpage would pop up and correlation plot between a lncRNA and mRNA would be automatically shown.
shinyCorPlot(gene1 = rownames(deLNC),
gene2 = rownames(dePC),
rna.expr = rnaExpr,
metadata = metaMatrix.RNA)
4.4 Other downstream analyses
Downstream analyses such as univariate survival analysis and functional enrichment analysis are developed in the GDCRNATools
package to facilitate the identification of genes in the ceRNAs network that play important roles in prognosis or involve in important pathways.
4.4.1 Univariate survival analysis
Two methods are provided to perform univariate survival analysis: Cox Proportional-Hazards (CoxPH) model and Kaplan Meier (KM) analysis based on the survival package. CoxPH model considers expression value as continous variable while KM analysis divides patients into high-expreesion and low-expression groups by a user-defined threshold such as median or mean. gdcSurvivalAnalysis()
take a list of genes as input and report the hazard ratio, 95% confidence intervals, and test significance of each gene on overall survival.
4.4.1.1 CoxPH analysis
####### CoxPH analysis #######
survOutput <- gdcSurvivalAnalysis(gene = rownames(deALL),
method = 'coxph',
rna.expr = rnaExpr,
metadata = metaMatrix.RNA)
4.4.1.2 KM analysis
####### KM analysis #######
survOutput <- gdcSurvivalAnalysis(gene = rownames(deALL),
method = 'KM',
rna.expr = rnaExpr,
metadata = metaMatrix.RNA,
sep = 'median')
4.4.1.3 KM plot on a local webpage by shinyKMPlot
The shinyKMPlot()
function is also a simply shiny
app which allow users view KM plots (based on the R package survminer.) of all genes of interests on a local webpackage conveniently.
shinyKMPlot(gene = rownames(deALL), rna.expr = rnaExpr,
metadata = metaMatrix.RNA)
4.4.2 Functional enrichment analysis
gdcEnrichAnalysis()
can perform Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Disease Ontology (DO) functional enrichment analyses of a list of genes simultaneously. GO and KEGG analyses are based on the R/Bioconductor packages clusterProfilier(???) and DOSE(???). Redundant GO terms can be removed by specifying simplify=TRUE
in the gdcEnrichAnalysis()
function which uses the simplify()
function in the clusterProfilier(???) package.
enrichOutput <- gdcEnrichAnalysis(gene = rownames(deALL), simplify = TRUE)
4.4.2.1 Barplot
data(enrichOutput)
gdcEnrichPlot(enrichOutput, type = 'bar', category = 'GO', num.terms = 10)
4.4.2.2 Bubble plot
gdcEnrichPlot(enrichOutput, type='bubble', category='GO', num.terms = 10)
4.4.2.3 View pathway maps on a local webpage
shinyPathview()
allows users view and download pathways of interests by simply selecting the pathway terms on a local webpage.
library(pathview)
deg <- deALL$logFC
names(deg) <- rownames(deALL)
pathways <- as.character(enrichOutput$Terms[enrichOutput$Category=='KEGG'])
shinyPathview(deg, pathways = pathways, directory = 'pathview')
5 sessionInfo
sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] DT_0.15 GDCRNATools_1.8.0
##
## loaded via a namespace (and not attached):
## [1] readxl_1.3.1 backports_1.1.10
## [3] fastmatch_1.1-0 BiocFileCache_1.12.1
## [5] plyr_1.8.6 igraph_1.2.6
## [7] splines_4.0.2 BiocParallel_1.22.0
## [9] pathview_1.28.1 GenomeInfoDb_1.24.2
## [11] ggplot2_3.3.2 urltools_1.7.3
## [13] digest_0.6.25 htmltools_0.5.0
## [15] GOSemSim_2.14.2 viridis_0.5.1
## [17] GO.db_3.11.4 magrittr_1.5
## [19] memoise_1.1.0 openxlsx_4.2.2
## [21] limma_3.44.3 Biostrings_2.56.0
## [23] readr_1.3.1 annotate_1.66.0
## [25] graphlayouts_0.7.0 matrixStats_0.57.0
## [27] askpass_1.1 enrichplot_1.8.1
## [29] prettyunits_1.1.1 colorspace_1.4-1
## [31] blob_1.2.1 rappdirs_0.3.1
## [33] ggrepel_0.8.2 haven_2.3.1
## [35] xfun_0.17 dplyr_1.0.2
## [37] crayon_1.3.4 RCurl_1.98-1.2
## [39] jsonlite_1.7.1 graph_1.66.0
## [41] scatterpie_0.1.5 genefilter_1.70.0
## [43] zoo_1.8-8 survival_3.2-3
## [45] glue_1.4.2 survminer_0.4.9
## [47] GenomicDataCommons_1.12.0 polyclip_1.10-0
## [49] gtable_0.3.0 zlibbioc_1.34.0
## [51] XVector_0.28.0 DelayedArray_0.14.1
## [53] car_3.0-9 Rgraphviz_2.32.0
## [55] BiocGenerics_0.34.0 abind_1.4-5
## [57] scales_1.1.1 DOSE_3.14.0
## [59] DBI_1.1.0 edgeR_3.30.3
## [61] rstatix_0.6.0 Rcpp_1.0.5
## [63] viridisLite_0.3.0 xtable_1.8-4
## [65] progress_1.2.2 gridGraphics_0.5-0
## [67] foreign_0.8-80 bit_4.0.4
## [69] europepmc_0.4 km.ci_0.5-2
## [71] stats4_4.0.2 htmlwidgets_1.5.1
## [73] httr_1.4.2 fgsea_1.14.0
## [75] gplots_3.1.0 RColorBrewer_1.1-2
## [77] ellipsis_0.3.1 pkgconfig_2.0.3
## [79] XML_3.99-0.5 farver_2.0.3
## [81] dbplyr_1.4.4 locfit_1.5-9.4
## [83] labeling_0.3 ggplotify_0.0.5
## [85] tidyselect_1.1.0 rlang_0.4.8
## [87] reshape2_1.4.4 later_1.1.0.1
## [89] AnnotationDbi_1.50.3 cellranger_1.1.0
## [91] munsell_0.5.0 tools_4.0.2
## [93] downloader_0.4 generics_0.0.2
## [95] RSQLite_2.2.1 broom_0.7.0
## [97] ggridges_0.5.2 evaluate_0.14
## [99] stringr_1.4.0 fastmap_1.0.1
## [101] yaml_2.2.1 org.Hs.eg.db_3.11.4
## [103] knitr_1.30 bit64_4.0.5
## [105] tidygraph_1.2.0 zip_2.1.1
## [107] survMisc_0.5.5 caTools_1.18.0
## [109] purrr_0.3.4 KEGGREST_1.28.0
## [111] ggraph_2.0.3 mime_0.9
## [113] KEGGgraph_1.48.0 DO.db_2.9
## [115] xml2_1.3.2 biomaRt_2.44.4
## [117] compiler_4.0.2 png_0.1-7
## [119] curl_4.3 ggsignif_0.6.0
## [121] tibble_3.0.3 tweenr_1.0.1
## [123] geneplotter_1.66.0 stringi_1.5.3
## [125] forcats_0.5.0 lattice_0.20-41
## [127] Matrix_1.2-18 KMsurv_0.1-5
## [129] vctrs_0.3.4 pillar_1.4.6
## [131] lifecycle_0.2.0 BiocManager_1.30.10
## [133] triebeard_0.3.0 data.table_1.13.0
## [135] cowplot_1.1.0 bitops_1.0-6
## [137] httpuv_1.5.4 GenomicRanges_1.40.0
## [139] qvalue_2.20.0 R6_2.4.1
## [141] promises_1.1.1 rio_0.5.16
## [143] KernSmooth_2.23-17 gridExtra_2.3
## [145] IRanges_2.22.2 MASS_7.3-53
## [147] gtools_3.8.2 assertthat_0.2.1
## [149] SummarizedExperiment_1.18.2 rjson_0.2.20
## [151] openssl_1.4.3 DESeq2_1.28.1
## [153] S4Vectors_0.26.1 GenomeInfoDbData_1.2.3
## [155] parallel_4.0.2 hms_0.5.3
## [157] clusterProfiler_3.16.1 grid_4.0.2
## [159] prettydoc_0.4.1 tidyr_1.1.2
## [161] rmarkdown_2.3 rvcheck_0.1.8
## [163] carData_3.0-4 ggpubr_0.4.0
## [165] ggforce_0.3.2 Biobase_2.48.0
## [167] shiny_1.5.0