- DataWhale Pandas数据分析 Task01:预备知识
Shawnxs_
DataWhalePandas数据分类pythonpandas
文章目录练习Ex1:利用列表推导式写矩阵乘法Ex2:更新矩阵Ex3:卡方统计量Ex4:改进矩阵计算的性能Ex5:连续整数的最大长度心得体会练习Ex1:利用列表推导式写矩阵乘法一般的矩阵乘法根据公式,可以由三重循环写出:In[138]:M1=np.random.rand(2,3)In[139]:M2=np.random.rand(3,4)In[140]:res=np.empty((M1.shape[
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 用Transformer实现OCR字符识别!
Datawhale
大数据数据挖掘编程语言python计算机视觉
Datawhale干货作者:安晟、袁明坤,Datawhale成员在CV领域中,transformer除了分类还能做什么?本文将采用一个单词识别任务数据集,讲解如何使用transformer实现一个简单的OCR文字识别任务,并从中体会transformer是如何应用到除分类以外更复杂的CV任务中的。全文分为四部分:一、数据集简介与获取二、数据分析与关系构建三、如何将transformer引入OCR四
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- Datawhale X 李宏毅苹果书 AI夏令营-深度学入门task2:线性模型
m0_53743757
人工智能机器学习算法
1.线性模型把输入的特征x乘上一个权重,再加上一个偏置就得到预测的结果,这样的模型称为线性模型(linearmodel)2.分段线性模型线性模型也许过于简单,x1跟y可能中间有比较复杂的关系。线性模型有很大的限制,只能表示一条直线,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。所以需要写一个更复杂的、更有灵活性的、有未知参数的函数。分段线性曲线(piecewiselinearcurve
- 聪明办法学Python第1节:启航
m0_53743757
python开发语言
作业链接:https://hydro.ac/d/datawhale_p2s/user/53146第一行代码print("聪明办法学Python")#输出:聪明办法学PythonHelloWorld的由来1972年,贝尔实验室成员BrianKernighan首次在程序中使用"hello,world"。注释Comment分类:单行注释,使用#开头多行注释,使用'''或"""包裹起来作用:注释主要是用于
- Datawhale七月组队——动手学数据分析 Task01 数据加载及探索性数据分析
郁浓
第一次的打卡内容包括数据的载入及初步观察、Pandas基础以及探索性数据分析三个部分。1.数据的载入及初步观察这一节内容中,刚开始绝对路径的设置中"/"和'''\'用错了,直接拿文件夹的路径粘贴过来,导致运行失败使用pandas中read_csv读取csv数据时,对于有表头的数据,将header设置为空(None),会报错:pandas_libs\parsers.pyxinpandas._libs
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- Datawhale AI夏令营第五期CV Task02
m0_60530253
人工智能深度学习
一、yolo模型介绍YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。YOLO算法的一个显著特点是它在单个网络
- Datawhale AI夏令营第五期魔搭-CV竞赛方向Task1笔记--初识yolo模型
切记 我是一个 温柔的 刀客
YOLO目标检测机器学习
DatawhaleAI夏令营第五期魔搭-CV竞赛方向Task1笔记–初识yolo模型作者:福州大学我是一个温柔的刀客2024/8/221.赛题简介本赛题最终目标是开发一套智能识别系统,能够自动检测和分类城市管理中的违规行为。该系统应利用先进的图像处理和计算机视觉技术,通过对摄像头捕获的视频进行分析,自动准确识别违规行为,并及时向管理部门发出告警,以实现更高效的城市管理。本质上是属于CV中的目标检测
- Datawhale Al夏令营第三期 Al+物质科学task2学习笔记
weixin_75033552
学习笔记
AI4Science是一个较为普遍的术语,通常指的是人工智能在科学研究和技术发展中的应用。它涵盖了各种科学领域,包括物理学、化学、生物学、地球科学等。虽然没有一个特定的确切历史,但可以描述人工智能在科学研究中的一些早期里程碑和发展趋势。早期发展知识表示与推理:20世纪70年代末和80年代初,早期的AI研究开始探索如何用机器推理来模拟人类的思维过程。这种推理方式被应用于物理学、化学等学科中,尝试解决
- Datawhale x李宏毅苹果书入门 AI夏令营 task03学习笔记
weixin_75033552
人工智能学习笔记
实践方法论训练模型的基本步骤:(如下图所示)用训练集训练模型,(最终得出来最优的参数集)将最优参数集带入模型中,用测试集测试模型(人话:将最优参数集带入原来函数中,用测试集的x值计算y值)(这个过程就叫做预测)训练过程中遇到问题的解决攻略(看下图的方式是“前序遍历”)modelbias出现问题的情况:1.看trainingdata的loss,太大;2.当你模型无论如何调整参数,训练的结果还是不够好
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- Datawhale AI夏令营
于弋gg
人工智能计算机视觉python
一、分析CV识别任务任务分析自己研究生期间做过的大多是无监督任务,监督任务做的很少。比如,之前用过yolov5做过滑动验证码的识别,给滑动验证码的缺口打标签是项耗时费力的工作。本次任务相同,是给非机动车、机动车打标签。frame_id:不同帧event_id:一帧里面出现的不同车辆idbbox:车辆位置模型输入输出猜测1)如果识别车辆很容易,那么输入原始音频x,标出每帧的位置作为输出,记为y。放进
- [Datawhale#1] cv task1 - Datawhale AI夏令营
cinboxer
cvpythonnumpypandasmatplotlib
参加cv方面的培训,记录自己的一些感悟吧。报名赛事2024“大运河杯”数据开发应用创新大赛——城市治理厚德云远程算力租赁https://portal.houdeyun.cn/register?from=Datawhale可以用3090,速度很快!baselineaptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datas
- [Datawhale AI 夏令营][第五期]智能识别系统-Task1笔记
keexh
人工智能笔记
任务是发布在MARS大数据服务平台的2024“大运河杯”数据开发应用创新大赛——城市治理。了解智慧河长的朋友可能听说类似的项目,它们可以识别河道中出现的一些问题。这次的智能识别系统与前者有相似的地方,但这个系统将聚焦城市违规行为的智能检测,通过研究开发高效可靠的计算机视觉算法,提升违规行为检测识别的准确度,降低对大量人工的依赖,提升检测效果和效率,从而推动城市治理向更高效、更智能、更文明的方向发展
- DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛-task2
十分钟ll
DataWhaleAI夏令营人工智能目标跟踪计算机视觉DataWhale竞赛大运河杯机器学习
DataWhaleAI夏令营2024大运河杯-数据开发应用创新赛YOLO(YouOnlyLookOnce)上分心得分享YOLO(YouOnlyLookOnce)YOLO算的上是近几年最火的目标检测模型了,被广泛的应用在工业、学术等领域。YOLOv1(YouOnlyLookOnce第一版)于2016年由JosephRedmon等人在其论文《YouOnlyLookOnce:Unified,Real-T
- Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
z are
人工智能深度学习
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着损失函数的梯度方向更新模型参数,以最小化损失值。公式如下:θt+1←θt-η*∇θL(θt)其中,θ表示模型参数,η表示学习率,L表示损失函数,∇θL表示损失函数关于参数的梯度。然而,梯度下降在复杂误差表面上存在局限性。例如,在鞍点或局部最小值处,梯度接近零,导致模
- 2020-03-24
黑乎乎AI
Datawhale零基础入门数据挖掘-Task2数据分析【代码摘要】赛题:零基础入门数据挖掘-二手车交易价格预测地址:[https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX]EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 局部极小值与鞍点 Datawhale X 李宏毅苹果书 AI夏令营
千740
人工智能深度学习机器学习
1,为什么随着参数的不断更新,损失无法降低?当参数对损失微分为零的时候,梯度下降就不能再更新参数了,训练就停下来了,损失不再下降了,此时梯度接近于0。我们把梯度为零的点统称为临界点(criticalpoint)。损失没有办法再下降,也许是因为收敛在了临界点,临界点包括局部极小值,局部极大值和鞍点(梯度是零且区别于局部极小值和局部极大值(localmaximum)的点)2,如果一个点的梯度接近于0,
- Datawhale X 李宏毅苹果书 AI夏令营Day03
xuanEpiphany29
人工智能
一、打卡Datawhale二、学习1、文档学习图中展示了一个函数集合,其中包含多个未知参数的函数fθ1(x)和fθ2(x)。通过将这些函数组合起来,可以得到一个更大的函数集合。然而,如果这个函数集合太小了,没有包含任何一个函数,那么即使找到了一个最优的θ∗,其损失仍然不够低。这就像大海里捞针一样,想要找到一个损失低的函数,但最终却发现这个函数并不在这个函数集合内。在这种情况下,可以通过重新设计模型
- Datawhale X 李宏毅苹果书 AI夏令营Day02
xuanEpiphany29
人工智能
一、打卡Datawhale进入打卡链接选择相对应的任务打卡就可以了二、学习1、线性模型依旧是b站上老师的授课视频,我找到知乎上解释很好的文章,分享一下机器学习(一)线性模型————理论篇线性回归模型、对数几率模型、线性判别分析模型、多分类学习模型-知乎(zhihu.com)(1)、模型概述线性模型是机器学习中一种非常基础且重要的模型,广泛应用于分类和回归任务。线性模型的基本思想是通过一个线性方程来
- FastAPI部署大模型Llama 3.1
记得叫Mark周更
人工智能
项目地址:self-llm/models/Llama3_1/01-Llama3_1-8B-InstructFastApi部署调用.mdatmaster·datawhalechina/self-llm(github.com)目的:使用AutoDL的深度学习环境,简单部署大模型环境准备考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了LLaMA3-1的环境镜像,点击下方链接并直接创
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- (202402)多智能体MetaGPT入门2:AI Agent知识体系结构
早上真好
参与dw开源学习语言模型人工智能
文章目录前言1智能体定义2热门智能体案例3智能体的宏观机会4AIAgent与Sy1&Sy2观看视频前言感谢datawhale组织开源的多智能体学习内容,飞书文档地址在https://deepwisdom.feishu.cn/wiki/KhCcweQKmijXi6kDwnicM0qpnEf本章主要为Agent相关理论知识的学习。1智能体定义智能体=LLM+观察+思考+行动+记忆多智能体=智能体+环境
- 深入浅出PyTorch学习网址
今天是学习的一天
人工智能
https://datawhalechina.github.io/thorough-pytorch/
- Datawhale用免费GPU线上跑AI项目实践课程任务一学习笔记。部署ChatGLM3-6B模型
Hoogte-oile
学习笔记学习笔记人工智能自然语言处理
前言本篇文章为学习笔记,流程参照Datawhale用免费GPU线上跑AI项目实践课程任务,个人写此文章为记录学习历程和补充概念,并希望为后续的学习者开辟道路,没有侵权的意思。如有错误也希望大佬们批评指正。模型介绍ChatGLM-6B是一个开源的、支持中英双语问答的对话语言模型,基于GeneralLanguageModel(GLM)架构,具有62亿参数。结合模型量化技术,用户可以在消费级的显卡上进行
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方