Handler原理解析

Handler原理解析

Handler的基本创建步骤

 new Thread(new Runnable() {
            @Override
            public void run() {
                Looper.prepare();
                Handler handler = new Handler();
                Looper.loop();
            }
        }).start();

要创建Handler首先需要looper对象,looper的prepare方法:

 public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    

可以看到方法中将当前线程的looper存储到了ThreadLocal中,
而ThreadLocal则是一个存储容器,对应不同的线程它都有独立的存储区间。比如现在有线程1,2,ThreadLocal分别在线程1和2中set不同参数,在对应线程中get是可以看到对应的数据是独立区分的,所以使用ThreadLocal来存储looper可以方便handler在对应线程获取对应looper,而不需要在全局自己维护一个map集合做过多的操作

new Thread("Thread#1") {
        public void run() { 
            threadLocal.set(2);
            System.out.println(Thread.currentThread().getName() + "--value:" + threadLocal.get()); 
    }; }.start();

new Thread("Thread#2") {
    public void run() { 
        System.out.println(Thread.currentThread().getName() + "--value:"
                    + threadLocal.get())
        
    };}.start();
    
输出结果:
Thread#1--value:2
Thread#2--value:null

再看looper的构造函数中创建持有了messagequeue和当前线程用于之后的消息处理和线程切换

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

在Handler的构造函数

 public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

通过sThreadLocal获取了对应线程的looper,如果为空就会抛出异常,并且持有了messagequeue用于后续的sendMessage

    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

sendMessage其实就是通过的messagequeue的enqueueMessage方法将消息添加到单链表队列中

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        //target指向handler本身用于后续looper中的消息分发
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

looper.loop方法无限for循环不停地通过messagequeue.next取出消息,如果messageQueue为空则next方法会进入阻塞从而阻塞looper的for循环,当有消息时就会通过msg.target.dispatchMessage(msg)分发消息(msg.target就是发送该消息的handler,而且该handler执行在创建当前looper的线程中所以完成了线程切换)

   public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
       //无限for循环
        for (;;) {
            Message msg = queue.next(); // might block
            //为空时直接return退出循环
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

那么什么时候能退出该无限循环呢?只有当looper的quit被调用,即messageQueue的quit,并且之后不会再接受新的消息

    //looper中的quit
    public void quit() {
        mQueue.quit(false);
    }
    
     
    //messageQueue中的quit,mQuitting =true
    //让next方法直接返回null使looper退出无线for循环
    //并且清空了所有的消息
     void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }

        synchronized (this) {
            if (mQuitting) {
                return;
            }
            mQuitting = true;

            if (safe) {
                removeAllFutureMessagesLocked();
            } else {
                removeAllMessagesLocked();
            }

            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }

这里的safe标志位,true针对quitSafely方法,false针对quit方法

当我们调用Looper的quit方法时,实际上执行了MessageQueue中的removeAllMessagesLocked方法,该方法的作用是把MessageQueue消息池中所有的消息全部清空,无论是延迟消息(延迟消息是指通过sendMessageDelayed或通过postDelayed等方法发送的需要延迟执行的消息)还是非延迟消息。

当我们调用Looper的quitSafely方法时,实际上执行了MessageQueue中的removeAllFutureMessagesLocked方法,通过名字就可以看出,该方法只会清空MessageQueue消息池中所有的延迟消息,并将消息池中所有的非延迟消息派发出去让Handler去处理,quitSafely相比于quit方法安全之处在于清空消息之前会派发所有的非延迟消息。

最后看一下dispatchMessage

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
  • msg.callback为handler.post中的runnable接口,不为空直接执行该接口run方法;
  • mCallback为handler内部接口,Callback源码里面的注释已经做了说明:可以用来创建一个Handler的实例但并不需要派生Handler的子类。在日常开发中,创建Handler最常见的方式就是派生一个Handler的子类并重写其handleMessage方法来处理具体的消息,而Callback给我们提供了另外一种使用Handler的方式,当我们不想派生子类时,就可以通过Callback来实现。
  • 如果都为空则实行handler的handleMessage方法
总结

looper创建时会根据当前线程存入ThreadLocal中,并且创建MessageQueue,handler创建时会去ThreadLocal寻找当前线程是否有对应的looper对象没有则抛出异常,初始化成功之后,looper.loop不断从messaegQueue中取出message,通过message中的target引用找到对应的handler,调用该dispatchMessage分发消息并处理

你可能感兴趣的:(Handler原理解析)