- 基于大模型预测的巨细胞病毒视网膜炎诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、巨细胞病毒视网膜炎概述2.1疾病定义与特点2.2流行病学分析2.3现有治疗手段综述三、大模型技术原理与应用现状3.1大模型介绍3.2在医疗领域的应用案例3.3选择大模型预测巨细胞病毒视网膜炎的原因四、术前预测与评估4.1数据收集与整理4.2大模型预测模型的构建4.3预测内容与指标4.4案例分析:术前预测实例展示五、术中方案制定
- 告别手抖烦恼,重拾生活稳 “态”
2503_90680515
生活
手抖,看似微小的症状,却可能极大地扰乱生活节奏。轻微颤抖让日常小事变得艰难,拿不稳杯子、握不好笔,严重时甚至影响工作、社交,自信心也随之受挫。想要摆脱手抖困扰,先得了解背后原因。引发手抖的因素多样。生理性手抖在情绪激动、过度劳累、大量饮酒后常出现,一般幅度小、速度快,诱因消除后多能缓解。病理性手抖则复杂得多,常见于帕金森病、特发性震颤等疾病。帕金森病除手抖外,还有肢体僵硬、动作迟缓等症状;特发性震
- 基于pytorch的神经病网络搭建学习
停走的风
pytorch学习学习pytorch人工智能
1.pycharm中code方法的使用1.1父类重写技巧操作:在需要重写的方法上右键,选择code-->Generate>OverrideMethods。作用:自动生成重写父类或接口的方法2.简单神经网络importtorchfromtorchimportnnclassyu(nn.Module):def__init__(self,*args,**kwargs)->None:super().__in
- 八字 十二长生 详解
admin
玄学
十二长生简介编辑十二生旺库是以日干对照年、月、日、时四个地支,而做出其性格,以及运程之论,一般来讲年支命限上属于幼年时期,月支代表青年时期,日支是代表中青年时期,时支代表晚年时期。在这里面最重要是日支,因为日干代表自己,同时一个人的中青年运程,往往可以决定这个人一生的荣辱成败。看年龄阶段可以重点看那个支,一般要综合分析。十二长生即五行的十二种运势:长生、沐浴、冠带、临官、帝旺、衰、病、死、墓、绝、
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
艾派森
数据挖掘实战合集python人工智能数据挖掘信息可视化数据分析
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 专栏问答:公共数据库发表能发表国际学术期刊吗?能够成为本硕博的毕业论文主要研究吗?以NHANES数据库为例
DAT|R科学与人工智能
用R探索医药数据科学数据库机器学习r语言r-4.2.1人工智能
随着大数据和人工智能的迅猛发展,公共数据库在医药研究中的应用日益广泛。无论是基因组学、流行病学,还是药物研发,公共数据库都提供了海量的数据资源,为研究人员节省了大量的时间和成本。然而,许多医药类专业的学生和研究者仍然对公共数据库的学术价值存在疑问:利用公共数据库的数据进行研究,是否可以发表在国际学术期刊上?能否作为本科、硕士或博士毕业论文的主要研究内容?本文将围绕这些问题展开讨论,并结合实际案例分
- Herpotrichone A:神经保护的新星,解锁铁死亡之谜
试剂界的爱马仕
人工智能科技机器学习算法AI写作
近日,一项来自中国西北农林科技大学的研究团队揭示了HerpotrichoneA(He-A)这一天然产物在缓解铁死亡(ferroptosis)方面的潜力,为神经保护提供了新的视角。研究背景:神经退行性疾病与铁死亡的纠葛神经退行性疾病,如阿尔茨海默病(AD)和帕金森病(PD),以其进行性的神经元丧失为特征,严重影响了患者的生活质量。这些疾病的发病机制复杂多样,但氧化应激和铁死亡被认为是其中的关键因素。
- 大模型在白血病诊疗全流程风险预测与方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能
目录一、绪论1.1研究背景与意义1.2国内外研究现状1.3研究目的与内容二、大模型技术与白血病相关知识2.1大模型技术原理与特点2.2白血病的病理生理与诊疗现状三、术前风险预测与手术方案制定3.1术前数据收集与预处理3.2大模型预测术前风险3.3根据预测制定手术方案四、术中风险预测与麻醉方案优化4.1术中实时数据监测与采集4.2大模型动态风险预测4.3基于预测调整麻醉方案五、术后风险预测与护理方案
- 基于yolov8的糖尿病视网膜病变严重程度检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的糖尿病视网膜病变严重程度检测系统基于YOLOv8的糖尿病视网膜病变严重程度检测系统是一款利用深度学习技术,专为糖尿病视网膜病变早期诊断设计的智能辅助工具。该系统采用YOLOv8目标检测模型,结合经过标注和处理的医学影像数据集,能够高效且准确地检测并分类糖尿病视网膜病变的不同严重程度。YOLOv8模型以其高速和高精度的特点,在处理眼底图像时展现了强大的能力。通过优化模型
- 基于Spring+SpringMVC+hibernate实现的体检中心管理系统
huaying0
java毕设资料java基础redisjava大数据人工智能数据库linux
源码及论文下载:http://www.byamd.xyz/tag/java/摘要随着人们生活水平的不断提高,人们的保健意识随之增强,体检已普遍成为人们保健的重要部分。特殊职业的体检、各种职业病的体检、单位职工的群体体检及个人体检使得医院体检人数急剧增加。然而传统的体检工作效率远远不能满足当下剧增的体检业务。所以,医院急需满足健康体检需要的信息管理系统来提高体检工作效率。本系统包括体检项目管理、预约
- 2025年软件工程/计算机科学与技术专业毕业设计选题推荐
yh1340327157
计算机毕设选题推荐案例课程设计java-ee数据库javamavenspringboot开发语言
基于微信小程序的社区疫情防控系统基于微信小程序的垃圾分类自动识别系统基于微信小程序的外卖点餐平台基于微信小程序的校园二手交易系统基于微信小程序的糖尿病居家健康管理系统基于微信小程序校园快递代领平台基于微信小程序的医院预约挂号系统基于微信小程序民宿预订系统基于微信小程序的校园求职招聘系统基于微信小程序大众的医疗服务系统基于微信小程序校园快递代取系统基于微信小程序的失物招领系统基于微信小程序的家校通系
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- AI写代码工具赋能前端开发:效率提升与身心健康
hzcaituowj
人工智能前端
在飞速发展的互联网时代,AI前端开发成为炙手可热的领域。然而,高强度的工作、紧迫的交付时间以及技术日新月异的更新迭代,也给开发者带来了巨大的压力,甚至严重影响着他们的身心健康。长时间伏案工作导致的颈椎病、眼疲劳、精神压力大等问题日益突出。本文将探讨如何利用先进的AI写代码工具提升工作效率,从而有效改善AI前端开发人员的身心健康状况。AI前端开发与身心健康:挑战与应对AI前端开发,特别是涉及到复杂交
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 生物可穿戴产品需要采集和监测哪些
番茄老夫子
人工智能
健康状态监测生理指标:包括心率、呼吸频率、体温等基础生理参数。例如,通过心率传感器实时监测动物的心跳,正常成年犬的心率在60-120次/分钟,若超出这个范围,可能提示动物存在健康问题,如心脏病、感染等;呼吸频率也是重要指标,犬的正常呼吸频率为10-30次/分钟,呼吸频率异常加快或减慢,可能与呼吸系统疾病、疼痛等有关;体温监测同样关键,猫狗的正常体温一般在37.5℃-39℃之间,体温异常往往是疾病的
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 植物神经紊乱应补充哪些维生素
小知识来科普
生活
植物神经紊乱,也被称为自主神经功能紊乱,是一组常由心理社会应激因素引发的症状群。此病可涉及全身多个系统,如心血管系统、呼吸系统、消化系统等,引发诸如体位性低血压、胸闷、胃痛等一系列症状,并可能伴有紧张、焦虑等情绪变化。在治疗植物神经紊乱的过程中,除了心理治疗、药物治疗和物理疗法外,适当补充维生素也能起到缓解症状的辅助作用。维生素B1(硫胺素)维生素B1对于改善植物神经功能紊乱引起的神经系统失调有一
- 初中信息技术说课python_第一单元 走进Python 编程世界
weixin_39917046
初中信息技术说课python
(共17张PPT)今年一场突如其来的新冠肺炎不仅使得人人带上了口罩,过了一个不一样的寒假,同时也使得我们以不一样的方式开启我们的学习。同学们你们知道那些人容易得肺炎重症呢?有基础病的身体素质差的身体质量指数(BMI,BodyMassIndex)是国际上常用的衡量人体肥胖程度和是否健康的重要标准,主要用于统计分析。肥胖程度的判断不能采用体重的绝对值,它天然与身高有关。因此,BMI通过人体体重和身高两
- coarse-to-fine(1) CF-DRNet
momoka9
论文笔记python
1、Coarse-to-fineclassificationfordiabeticretinopathygradingusingconvolutionalneuralnetwork使用卷积神经网络对糖尿病视网膜病变分级进行从粗到细的分类。ArtificialIntelligenceinMedicineVolume108,August2020,101936亮点首次提出了一个分层的从粗到细的糖尿病视网
- 运动神经元病(渐冻症)如何诊断?
2501_90506537
健康医疗生活
渐冻症也称为肌萎缩侧索硬化,是一种常见的运动神经元疾病。可以导致上、下神经元受损,主要表现为肌无力、肌肉萎缩和明显的椎管征。常见的首发症状是一侧或两侧手指动作笨拙无力,随后小手肌萎缩,逐渐延伸至前臂、上臂和肩胛带肌。随着疾病的发展,肌肉无力和萎缩的症状将逐渐扩展到全身躯干和颈部,最终累及面部肌肉和咽部肌肉,延髓麻痹可能发生在晚期。这种疾病的预后不是很好,大多数患者可能在三到五年内因呼吸肌受累而危及
- 基于机器学习中集成学习的stacking方式进行的金线莲质量鉴别研究(python进行数据处理并完成建模,对品种进行预测)
Life is a joke
PYTHON人工智能机器学习机器学习集成学习人工智能
1.前言金线莲为兰科开唇兰属植物,别名金丝兰、金丝线、金耳环、乌人参、金钱草等,是一种名贵中药材,国内主要产地为较低纬度地区如:福建、台湾、广东、广西、浙江、江西、海南、云南、四川、贵州以及西藏南部[1],被当地人民誉为“药中之王”,福建品种和台湾品种更是其中的上等品种,在治疗肺部炎症、糖尿病、癌症、肾炎、膀胱炎、重症肌无力、风湿性及类风湿性关节炎、高血脂、毒蛇咬伤有着很大的作用[2-3]。由于野
- 21章8节:绘制三维地形图
DAT|R科学
用R探索医药数据科学r语言r语言-4.2.1地形图三维地形图
三维地形图在医学、流行病学、生态学和城市规划等多个领域中具有重要的应用价值。它不仅能够帮助研究人员更直观地了解地形对疾病传播、环境健康和公共卫生的影响,还能在疾病防控和健康风险评估中提供关键信息。在流行病学研究中,三维地形图能够显示地形起伏与气候条件如何交互作用,影响传染病的传播模式。而在环境健康领域,三维地形图则有助于科学家识别与地理因素相关的健康风险,为公共卫生决策提供数据支持。一、认识三维地
- 机器学习:利用sklearn实现心脏病预测
薄化克Oswald
机器学习:利用sklearn实现心脏病预测机器学习sklearn实现心脏病预测项目地址:https://gitcode.com/Resource-Bundle-Collection/171ff欢迎使用本资源仓库,本项目专注于利用Python的sklearn库进行心脏病预测的机器学习实践。通过详尽的步骤和示例代码,本项目为你展示了如何应用不同的机器学习算法来分析心脏病数据集,并预测患者是否有可能患有
- DRG/DIP DRG:按病种付费,DIP:基于DRG的原理进行的按病种点数付费
简简单单OnlineZuozuo
金融领域DRGDIP按病种付费
文章目录DRG/DIPDRG:按病种付费,DIP:基于DRG的原理进行的按病种点数付费概念影响DRG/DIPDRG:按病种付费,DIP:基于DRG的原理进行的按病种点数付费概念DRG/DIP,其实指的是医保支付方式,DRG是按病种付费,DIP是基于DRG的原理进行的按病种点数付费简单来说前者是把一个病种所需要的各种诊疗服务一起打包进行付费,后者是对于诊疗中的各个因素比如诊疗项目、床日、病种等因素根
- InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
- DRG/DIP医保结算中的偏差病例
DIPDRG分组器团队
dip大数据
低倍率病例什么是低倍率?1、《国家医疗保障疾病诊断相关分组(CHS-DRG)分组与付费技术规范》中规定低倍率病例入组后住院费用一般低于该DRG病组支付标准30%。2、DIP低倍率病例入组后住院费用一般低于该DIP病种次均费用50%。低倍率病例产生的主要原因一是入组错误,即主要诊断选择错误、其他诊断或手术操作错填等,导致错误入组;二是治疗不充分,即患者由于病情过重出现死亡或者自身意愿提前自动出院,整
- 为AI聊天工具添加一个知识系统 之40 总纲领和整体设计 之2 三种簿册(账簿/电话簿/户口簿)
一水鉴天
人工语言软件智能智能制造人工智能
本文要点前面给出的是项目式开发的项目“口号”,有点像包治百病的“万金油”。但在原型(原型式开发的一个原型口号)上分别有三个口号--注意:它们的表达和项目口号完全不同。逻辑上:所有模型model都是错的,但某些模型是有用的。数学上:所有程序prcedure严格来讲都是不精确的,但是有些程序非常接近用户的预期;语言上:所有表达expression都是含糊的,但任何语言都具有巨大的表达力。现在剩下的就是
- OpenDRG/DRG_Datas 项目使用教程
咎宁准Karena
OpenDRG/DRG_Datas项目使用教程项目地址:https://gitcode.com/gh_mirrors/dr/DRG_Datas1.项目目录结构及介绍DRG_Datas/├──ICD/│├──ICD诊断、手术操作编码.csv│├──基础数据.csv│├──版本对照关系.csv│└──手术操作类别属性.csv├──Payment/│├──各地DRG病组清单.csv│└──医保支付标准.
- 记录一个LLM+API类型的临床预测模型APP(糖尿病Cox预测模型)的过程
预测模型的开发与应用研究
APPconstructionwebapp
记录一个LLM+API类型的临床预测模型APP(糖尿病Cox预测模型)的构建过程LLM代表的是大语言模型,API代表的是机器学习模型,LLM+API是说将机器学习模型以API的形式引入到LLM,让机器学习模型以对话的方式与用户交流而服务于临床实践的APP形式,是区别与streamlit等具有可视化界面的APP的另外一种APP形式,其优点是结合了LLM丰富的知识储备和对用户需求的理解能力,以及机器学
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数