前言
刚决定以后将博客同步到csnd和,考虑到将以前的博客迁移到这边比较麻烦,就不迁移了。只同步以后的博客。
所以,如果想了解前面的博客内容,请移步原博客
Problem
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
The solution set must not contain duplicate quadruplets.
Examples:
Input: nums = [1, 0, -1, 0, -2, 2], and target = 0
Output:
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
Solutions
- 和第15题3Sum思路类似,十五题是固定一个数字,然后双指针求三数之和,这题固定两个数字,然后双指针求四数之和。其实原理和3Sum一样
C++ Codes
class Solution {
public:
set >res;
vector> fourSum(vector& nums, int target) {
if(nums.size()<4)return {};
sort(nums.begin(), nums.end());
for(int i=0;itarget) r--;
else if(tmp >(res.begin(), res.end());
}
};
Python Codes
为啥我总是不想用python再写一遍,感觉很没意思...
附上题解里找到Python版本代码
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
n = len(nums)
if n < 4: return []
nums.sort()
res = []
for i in range(n-3):
# 防止重复 数组进入 res
if i > 0 and nums[i] == nums[i-1]:
continue
# 当数组最小值和都大于target 跳出
if nums[i] + nums[i+1] + nums[i+2] + nums[i+3] > target:
break
# 当数组最大值和都小于target,说明i这个数还是太小,遍历下一个
if nums[i] + nums[n-1] + nums[n-2] + nums[n-3] < target:
continue
for j in range(i+1,n-2):
# 防止重复 数组进入 res
if j - i > 1 and nums[j] == nums[j-1]:
continue
# 同理
if nums[i] + nums[j] + nums[j+1] + nums[j+2] > target:
break
# 同理
if nums[i] + nums[j] + nums[n-1] + nums[n-2] < target:
continue
# 双指针
left = j + 1
right = n - 1
while left < right:
tmp = nums[i] + nums[j] + nums[left] + nums[right]
if tmp == target:
res.append([nums[i],nums[j],nums[left],nums[right]])
while left < right and nums[left] == nums[left+1]:
left += 1
while left < right and nums[right] == nums[right-1]:
right -= 1
left += 1
right -= 1
elif tmp > target:
right -= 1
else:
left += 1
return res
总结
- 双指针用法之一:找目标数字,四个数可以固定两个数,另外两个数双指针求
- 差不多类型的题,,,要学会套路