sampled_softmax

import zipfile
import tensorflow as tf
import numpy as np
import random
import math
import collections
import pickle as pkl
import os
from matplotlib import pylab
from sklearn.manifold import TSNE


def save_obj(save_path, obj):
    if os.path.isfile(save_path):
        raise RuntimeError('the save path should be a dir')
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    param_path = os.path.join(save_path, 'params.pkl')
    if os.path.exists(param_path):
        os.remove(param_path)
    with open(param_path, 'wb') as f:
        pkl.dump(obj, f)
    stat_info = os.stat(param_path)
    print('Compressed pickle size:', stat_info.st_size)


def load_obj(save_path, obj):
    param_path = os.path.join(save_path, 'params.pkl')
    if os.path.exists(param_path):
        return pkl.load(open(param_path, 'r'))
    return None


def build_dataset(words):
    count = [['UNK', -1]]
    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
    dictionary = dict()
    for word, _ in count:
        dictionary[word] = len(dictionary)
    data = list()
    unk_count = 0
    for word in words:
        if word in dictionary:
            index = dictionary[word]
        else:
            index = 0  # dictionary['UNK']
            unk_count = unk_count + 1
        data.append(index)
    count[0][1] = unk_count
    reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
    return data, count, dictionary, reverse_dictionary


def read_data(filename):
    """Extract the first file enclosed in a zip file as a list of words"""
    with zipfile.ZipFile(filename) as f:
        data = tf.compat.as_str(f.read(f.namelist()[0])).split()
    return data

def generate_batch(batch_size, num_skips, skip_window):
    global data_index
    assert batch_size % num_skips == 0
    assert num_skips <= 2 * skip_window
    batch = np.ndarray(shape=(batch_size), dtype=np.int32)
    labels = np.ndarray(shape=(batch_size, 1), dtype=np.float32)
    span = 2 * skip_window + 1  # [ skip_window target skip_window ]
    buffer = collections.deque(maxlen=span)
    for _ in range(span):
        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    for i in range(batch_size // num_skips):
        target = skip_window  # target label at the center of the buffer
        targets_to_avoid = [skip_window]
        for j in range(num_skips):
            while target in targets_to_avoid:
                target = random.randint(0, span - 1)
            targets_to_avoid.append(target)
            batch[i * num_skips + j] = buffer[skip_window]
            labels[i * num_skips + j, 0] = buffer[target]
        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    return batch, labels


# load data
filename = "D:/kaggle/rnn/enwik8.zip"

# read data
words = read_data(filename)
print('Data size %d' % len(words))

vocabulary_size = 50000
context_size = 1

data, count, dictionary, reverse_dictionary = build_dataset(words)
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10])
del words  # Hint to reduce memory.

# split data
data_index = 0

print('data:', [reverse_dictionary[di] for di in data[:8]])

for num_skips, skip_window in [(2, 1), (4, 2)]:
    batch, labels = generate_batch(batch_size=8, num_skips=num_skips, skip_window=skip_window)
    print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))
    print('    batch:', [reverse_dictionary[bi] for bi in batch])
    print('    labels:', [reverse_dictionary[li] for li in labels.reshape(8)])

batch_size = 128
embedding_size = 128  # Dimension of the embedding vector.
skip_window = 1  # How many words to consider left and right.
num_skips = 2  # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16  # Random set of words to evaluate similarity on.
valid_window = 100  # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(range(valid_window), valid_size))
num_sampled = 64  # Number of negative examples to sample.

# tensor: Train a skip-gram model, word2vec
graph = tf.Graph()

with graph.as_default(), tf.device('/gpu:0'):
    # Input data.
    train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
    train_labels = tf.placeholder(tf.float32, shape=[batch_size, 1])
    valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

    # Variables.
    embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
    softmax_weights = tf.Variable(
        tf.truncated_normal([vocabulary_size, embedding_size],
                            stddev=1.0 / math.sqrt(embedding_size)))
    softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))

    # Model.
    # Look up embeddings for inputs.
    embed = tf.nn.embedding_lookup(embeddings, train_dataset)
    # Compute the softmax loss, using a sample of the negative labels each time.
    loss = tf.reduce_mean(
        tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, train_labels, embed,
                                   num_sampled, vocabulary_size))

    # Optimizer.
    optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

    # Compute the similarity between minibatch examples and all embeddings.
    # We use the cosine distance:
    norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
    normalized_embeddings = embeddings / norm
    valid_embeddings = tf.nn.embedding_lookup(
        normalized_embeddings, valid_dataset)
    similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))

# flow
num_steps = 100001
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(graph=graph, config=config) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    average_loss = 0
    for step in range(num_steps):
        batch_data, batch_labels = generate_batch(
            batch_size, num_skips, skip_window)
        feed_dict = {train_dataset: batch_data, train_labels: batch_labels}
        _, l = session.run([optimizer, loss], feed_dict=feed_dict)
        average_loss += l
        if step % 2000 == 0:
            if step > 0:
                average_loss /= 2000
            # The average loss is an estimate of the loss over the last 2000 batches.
            print('Average loss at step %d: %f' % (step, average_loss))
            average_loss = 0
        # note that this is expensive (~20% slowdown if computed every 500 steps)
        if step % 10000 == 0:
            sim = similarity.eval()
            for i in range(valid_size):
                valid_word = reverse_dictionary[valid_examples[i]]
                top_k = 8  # number of nearest neighbors
                nearest = (-sim[i, :]).argsort()[1:top_k + 1]
                log = 'Nearest to %s:' % valid_word
                for k in range(top_k):
                    close_word = reverse_dictionary[nearest[k]]
                    log = '%s %s,' % (log, close_word)
                print(log)
    final_embeddings = normalized_embeddings.eval()
    save_obj('D:/kaggle/rnn/', final_embeddings)

num_points = 400

tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points + 1, :])


def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()


words = [reverse_dictionary[i] for i in range(1, num_points + 1)]
plot(two_d_embeddings, words)

你可能感兴趣的:(sampled_softmax)