Yolov5-6.0官方源代码骨干解析,并使用TensorRT加速推理,最后封装成API

这里写目录标题

    • YOLOV5模型源码的详细解析,先从模型结构开始,再到数据的预处理阶段,然后模型推理阶段Detect,最后使用TensorRT部署加速,基于Flask封装成api方便调用。
    • 主要模型代码
    • 数据预处理
    • 模型推理阶段(Detect)
    • TensorRT加速
    • Flask API 封装

YOLOV5模型源码的详细解析,先从模型结构开始,再到数据的预处理阶段,然后模型推理阶段Detect,最后使用TensorRT部署加速,基于Flask封装成api方便调用。

主要模型代码

YOlOv5最新的官方代码是7.0版本,增添了很多内容。这里模型代码到推理代码的源代码解析使用的是6.0版本,tensorrt转换代码使用的是7.0版本。
Yolov5-6.0官方源代码骨干解析,并使用TensorRT加速推理,最后封装成API_第1张图片
Yolov5模型的组成总体是图中的四块,每一块则使用不同的小组件搭建而成。这里以yolov5s.yaml举例:

backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

yolov5s.yaml的每一行内容代表:[连接哪一层或几层的输出,组件重复次数,组件名称,组件参数:(输出通道数数量,卷积核大小,填充大小,步长大小)] ,最后的注释代表的是:这层的位置-名称/压缩大小
初始化组件的函数在yolo.py的 parse_model中:

def parse_model(d, ch):  # model_dict, input_channels(3)
    # 加载yolos.yaml的基础信息
    LOGGER.info('\n%3s%18s%3s%10s  %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # anchors对的数量
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 4 + 1)

    """ 
    layers:会按照顺序存放每一个层的结构,最后用于Sequential
    save:存放不为-1的层
    ch: 存放当前层的通道数
    """
    '''通过配置文件初始化模型结构的逻辑是这样的:
       comments中已经实现了每一个组件,从结构方面对于每一层,我们关心的是输入是什么,输出是什么,其中args自始至终都是每一层的输入/输出参数。
       在每一层的里面,关心的是有什么组件,组件的数量和组件的连接顺序。其中m充当着组件类型,n充当着组件数量,最简单的顺序就是依次排列。
       但对于跨越连接该如何处理呢,我们就需要通过索引获取上一层的输出,但是跨越链接两边相隔很远,且无法作为一层来操作,就用save把层数索引单独保存下来,放到后面处理。
    '''
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        '''控制深度,也就是控制重复次数,比如[-1, 9, C3, [512]], round(9*0.33) = 3'''
        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        '''所有的组件匹配,实现代码在comments'''
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            # c1输入通道,c2输出通道
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                '''控制宽度,控制当前层的输出通道数'''
                c2 = make_divisible(c2 * gw, 8)
            # args删掉了位置信息,增加了必要的输入输出
            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d: # 
            args = [ch[f]]
        elif m is Concat: # args的第一位是一个列表
            c2 = sum([ch[x] for x in f])
        elif m is Detect:# args的第一位是一个列表
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
		# if n > 1 重复组件的次数
        m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum([x.numel() for x in m_.parameters()])  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info('%3s%18s%3s%10.0f  %-40s%-30s' % (i, f, n_, np, t, args))  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2) # ch保存着每一层的输出通道数
    return nn.Sequential(*layers), sorted(save)

模型的前向推理在yolo.py的Model.forward,其主要调用的是_forward_once:

class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        '''就是加载yaml文件'''
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ''''''
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        '''是否为自定义anchors'''
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        # self.model初始化的层,self.save保存着不为-1的连接层
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model(Sequential), savelist(List)
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names,数字标签
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        '''m对应这个 [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)'''
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            # 是否推理加速
            m.inplace = self.inplace
            # 计算下采样倍数,[8,16,32]
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            # 计算每个features map相对应的anchors大小,除以相对下采样倍数即可
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        # 推理的时候是否也需要数据增强
        if augment:
            return self._forward_augment(x)  # augmented inference, None,推理时用不用数据增强
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

	 def _forward_once(self, x, profile=False, visualize=False):
        '''
            m.f(m.from) != -1 有两种可能,一个正数或者一个列表,一个列表代表着需要前几层的输出。
            self.save 保存着不为-1的所有下标,数量较少,用y保存相应层的实际输出。
        '''
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            # 打印信息
            if profile:
                self._profile_one_layer(m, x, dt)
            '''前面已经通过parse_model初始化完成了,这里直接forward'''
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            # 可视化
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
        '''
        输出x为list:bartch_size=8,anchors=3*3=9,feature map大小不一,xywhc+80个类别
	        torch.Size([8, 3, 80, 80, 85])
	        torch.Size([8, 3, 40, 40, 85])
	        torch.Size([8, 3, 20, 20, 85])
        '''

输出的结果是归一化的结果,怎样将得到的目标框转为原来相对应的尺寸?
https://blog.csdn.net/ogebgvictor/article/details/127481011 更加详细。
我们知道,COCO数据集有80个分类,每个anchor的对应的输出时xywhc+80,其中xy对应的是自身所处格子中心左上角的偏移。wh预测的也不时直接预测出的宽高,而是相对于目前的anchor值,预测值wh会乘上anchor值得到对应的宽高
Yolov5-6.0官方源代码骨干解析,并使用TensorRT加速推理,最后封装成API_第2张图片
最后一层Detect是yolo.py中的Detect类:

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes 80
        self.no = nc + 5  # number of outputs per anchor 85
        self.nl = len(anchors)  # number of detection layers 3
        self.na = len(anchors[0]) // 2  # number of anchors 每一层的anchors对是3对
        self.grid = [torch.zeros(1)] * self.nl  # init grid 初始化格子的坐标
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2) (3,3,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl): # 遍历每一层的输出
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # 初始化grid与anchor_grid

                # 公式计算
                y = x[i].sigmoid()
                if self.inplace:
                    '''xy
                    y[..., 0:2] * 2. - 0.5 = 偏移量
                    self.grid[i] = 每个格子的中心坐标
                    self.stride[i] = 下采样率
                    '''
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    ''''wh
                    (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] = 直接乘上相对应的anchor值,anchor值在在初始化是已经乘上了下采样倍数
                    '''
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
    	# 初始化每个小方格的坐标与对应的anchor值
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

数据预处理

数据预处理流程从utils中的dataset.py 进入,部分数据增强的方法写在utils中的augmentations.py中。数据增强使用在dataset.py的LoadImagesAndLabels类的__getitem__中:

    def __getitem__(self, index):
        # 数据增强手段
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        # mosaic数据增强方式,load_mosaic将随机选取4张图片组合成一张图片
        mosaic = self.mosaic and random.random() < hyp['mosaic']
        if mosaic:
            # Load mosaic
            img, labels = load_mosaic(self, index)
            shapes = None

            # MixUp augmentation
            if random.random() < hyp['mixup']:
                img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))

        else:
            # Load image
            img, (h0, w0), (h, w) = load_image(self, index)

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            # 自适应缩放过程
            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

            if self.augment:
            # 其他增强方法
                img, labels = random_perspective(img, labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])
                 # 省略部分代码
         # Convert
         img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
         img = np.ascontiguousarray(img)
		 
		 # 注意输出结果:图片,标签,图片对应路径,图片大小
         return torch.from_numpy(img), labels_out, self.img_files[index], shapes

mosaic 数据增强

# mosaic 数据增强
'''
将四张图片随机拼接成一整图片
https://blog.csdn.net/weixin_43799388/article/details/123830587 更加详细
'''
def load_mosaic(self, index):
    # index get_item中图片的索引
    # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
    labels4, segments4 = [], []
    s = self.img_size
    # self.mosaic_border = [-img_size // 2, -img_size // 2]
    # A(s/2, s/2)和点B(3s/2, 3s/2)限定的矩形内随机选择一点作为拼接点
    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices 随机取三张
    random.shuffle(indices)
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img4
        if i == 0:  # top left
            '''初始化一幅尺寸为2s*2s的灰色大图,(1280,1280,3)'''
            '''a为灰度图的待填充空间,b为图片的保留空间'''
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
        elif i == 3:  # bottom right
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        # 一张一张的填充到灰度图中
        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels
        labels, segments = self.labels[index].copy(), self.segments[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
        labels4.append(labels)
        segments4.extend(segments)

    # Concat/clip labels
    # np.clip 限制标签在灰度图中,舍去超出的部分
    labels4 = np.concatenate(labels4, 0)
    for x in (labels4[:, 1:], *segments4):
        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    # img4, labels4 = replicate(img4, labels4)  # replicate

    # Augment,不用管
    img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
    img4, labels4 = random_perspective(img4, labels4, segments4,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img4, labels4

cutout数据增强

'''随机遮盖部分区域
'''
def cutout(im, labels, p=0.5):
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    if random.random() < p:
        h, w = im.shape[:2]
        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
        for s in scales:
            mask_h = random.randint(1, int(h * s))  # create random masks
            mask_w = random.randint(1, int(w * s))

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask
            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

            # return unobscured labels
            # 删掉遮盖标签超过60%的标签
            if len(labels) and s > 0.03:
                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
                ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
                labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return labels

Mixup数据增强

'''不同透明度的图片重叠在一起
'''
def mixup(im, labels, im2, labels2):
    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
    im = (im * r + im2 * (1 - r)).astype(np.uint8) # 将两张图片按照不同比例混合在一起
    labels = np.concatenate((labels, labels2), 0) # 标签直接拼接
    return im, labels

HSV色域变换数据增强

'''色域转换,三个通道的颜色分别处理'''
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
    # HSV color-space augmentation
    if hgain or sgain or vgain:
        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) # HSV色域
        dtype = im.dtype  # uint8

        x = np.arange(0, 256, dtype=r.dtype)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed

直方图均衡化数据增强

'''直方图均衡化
- 将BGR(或RGB)图像转换为YUV格式的图像。
- 若clahe=True,则采用自适应直方图均衡化,否则使用全局直方图均衡化,对Y通道进行直方图均衡化处理。
- 将处理后的YUV格式图像转换为BGR(或RGB)格式的图像,返回。
'''
def hist_equalize(im, clahe=True, bgr=False):
    # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
    if clahe:
        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
    else:
        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB

复制标签数据增强

'''复制标签区域'''
def replicate(im, labels):
    # Replicate labels
    h, w = im.shape[:2]
    boxes = labels[:, 1:].astype(int)
    x1, y1, x2, y2 = boxes.T
    # 计算每个标签所对应的矩形的边长s。
    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
    # 对边长进行排序,并获取前50%最小的索引。
    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
        # 遍历这些最小的索引,对每个标签进行复制操作。
        x1b, y1b, x2b, y2b = boxes[i]
        bh, bw = y2b - y1b, x2b - x1b
        # 获取一个在图像内随机偏移的位置`(xc, yc)`。
        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
        # 根据偏移位置和标签宽度和高度,计算出复制后的标签的坐标`[x1a, y1a, x2a, y2a]`。
        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)

    return im, labels

自适应标签函数

'''自适应边框函数'''
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    # 保证缩小而不是放大图片
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    # 计算需要添加的边框大小并设置填充比例。如果auto为True,则按照stride的大小计算边框。如果scaleFill为True,
    # 则将图像拉伸以适应目标尺寸,而不是保留原始比例。
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

仿射变换数据增强

'''仿射变换
- `targets`: 目标框的坐标信息,包括目标类别和坐标信息。
- `segments`: 目标分割区域的坐标信息。
- `degrees`: 旋转的角度范围。
- `translate`: 平移的比例范围。
- `scale`: 缩放的比例范围。
- `shear`: 剪切的角度范围。
- `perspective`: 透视变换的程度。
'''

def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
                       border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
    width = im.shape[1] + border[1] * 2

    # Center
    # 中心矩阵
    C = np.eye(3)
    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)

    # Perspective
    # 透视矩阵P,并对P的第三维度进行随机调整
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    # 旋转缩放矩阵R,并对R的旋转角度和缩放比例进行随机调整
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    # 创建剪切矩阵S,并对S的两个维度进行随机调整
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    # 平移矩阵T,并对T的两个维度进行随机调整
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

    # Combined rotation matrix
    # 将所有矩阵按照顺序乘起来,得到最终的变换矩阵M。
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    # 如果border参数不为0或者M不为单位矩阵,则对图像进行变换。
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
        else:  # affine
            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(im[:, :, ::-1])  # base
    # ax[1].imshow(im2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    # 如果targets参数不为空,则对目标物体坐标进行相应的调整。
    if n:
        use_segments = any(x.any() for x in segments)
        new = np.zeros((n, 4))
		if use_segments:...
        else:  # warp boxes
            xy = np.ones((n * 4, 3)) # 前两列表示对图像进行旋转、缩放和剪切的变换,第三列表示对图像进行平移的变换
            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
            xy = xy @ M.T  # transform
            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

            # clip
            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)

        # filter candidates
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
        targets = targets[i]
        targets[:, 1:5] = new[i]

    return im, targets

模型推理阶段(Detect)

detect.py 包含了对各种权重格式的加载、推理,非常的杂。这里看主要代码:

...
    if pt and device.type != 'cpu':
	    model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device) # 加载权重
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters())))  # run once,imgsz=640 
...
...
	# Dataloader
    # 视频流/网页与单张图片,batch_size不同
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    for path, img, im0s, vid_cap in dataset:
        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32 半精度更快
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
    
    	# Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            """
               pred.shape=(1, num_boxes, 5+num_class)
               h,w为传入网络图片的长和宽,注意dataset在检测时使用了矩形推理,所以这里h不一定等于w
               num_boxes = h/32 * w/32 + h/16 * w/16 + h/8 * w/8
               pred[..., 0:4]预测框坐标为xywh格式,通过yolo.py中的Detect类已经扩展成了原图的大小
               pred[..., 4]objectness置信度
               pred[..., 5:-1]分类结果
             """
            pred = model(img, augment=augment, visualize=visualize)[0]
		
		# NMS
		# 非极大值抑制函数(重要)
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        
        # 画框,保存的操作
        ...

非极大值抑制函数

def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), max_det=300):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """
    # 获取类别数量
    nc = prediction.shape[2] - 5  # number of classes
    # 获取所有置信度高于阈值的备选框
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    min_wh, max_wh = 2, 4096 # 框的最小和最大宽度和高度
    max_nms = 30000  # 最大需要输入 torchvision.ops.nms() 的框数
    time_limit = 10.0   # 最大处理时间
    redundant = True   # 需要冗余检测结果
    multi_label &= nc > 1  # 每个框可能有多个标签(添加0.5ms/图像的处理时间)
    merge = False  # 使用 merge-NMS 算法

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # 图像索引,图像检测结果
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]   # 保留置信度高于阈值的备选框

        # 如果使用自动标注,则添加标签
        if labels and len(labels[xi]):
            l = labels[xi]
            v = torch.zeros((len(l), nc + 5), device=x.device)
            v[:, :4] = l[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # 如果没有备选框则处理下一张图像
        if not x.shape[0]:
            continue

        # 计算置信度
        x[:, 5:] *= x[:, 4:5]   # 置信度 = 目标置信度 * 类别置信度

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        # 转换xywh2xyxy,左上右下
        box = xywh2xyxy(x[:, :4])

        # 得到检测结果矩阵 nx6 (xyxy, 置信度, 类别)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:   # 只保留最高置信度的类别
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        # 过滤框太少或太多
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # 框(加上类别的偏移量),置信度
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # 限制检测结果的数量
            i = i[:max_det]
        if merge and (1 < n < 3E3):   # 使用 merge-NMS 算法(使用加权平均数合并框)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING: NMS time limit {time_limit}s exceeded')
            break  # time limit exceeded

    return output

TensorRT加速

转换成tensorrt格式有两种方式,一种是pytorch -> engine ;另一种是pytorch -> onnx -> engine。
onnx现在作为通用的中间格式,已经支持许多格式的算子映射,pytorch自身封装了onnx,所以更为方便。
最新的官方代码已经支持tensorrt格式的转换,也是采用的第二种方式。


Format                      | `export.py --include`         | Model
---                         | ---                           | ---
PyTorch                     | -                             | yolov5s.pt
TorchScript                 | `torchscript`                 | yolov5s.torchscript
ONNX                        | `onnx`                        | yolov5s.onnx
OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
**TensorRT                    | `engine`                      | yolov5s.engine**
CoreML                      | `coreml`                      | yolov5s.mlmodel
TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
TensorFlow GraphDef         | `pb`                          | yolov5s.pb
TensorFlow Lite             | `tflite`                      | yolov5s.tflite
TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
    # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
    assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
    try:
        import tensorrt as trt
    except Exception:
        if platform.system() == 'Linux':
            check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
        import tensorrt as trt

    # 先转为onnx文件保存,再将onnx转为engine
    if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
        grid = model.model[-1].anchor_grid
        model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
        model.model[-1].anchor_grid = grid
    else:  # TensorRT >= 8
        check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
    onnx = file.with_suffix('.onnx')

    LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
    assert onnx.exists(), f'failed to export ONNX file: {onnx}'
    f = file.with_suffix('.engine')  # TensorRT engine file 换个后缀

    # trt日志设置
    logger = trt.Logger(trt.Logger.INFO)
    if verbose:
        logger.min_severity = trt.Logger.Severity.VERBOSE
    # 创建Tensor引擎对象
    builder = trt.Builder(logger)

    config = builder.create_builder_config()
    # 设置引擎最大工作空间
    # 表示向左移动30位,即乘以2的30次方即1G
    config.max_workspace_size = workspace * 1 << 30 # 4G
    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice

    '''
    在隐式批处理模式下,TensorRT可以在推理时动态地处理不同大小的批次。
    而在显式批处理模式下,TensorRT需要在构建引擎时指定固定的批次大小,这可以提高引擎的性能。
    '''
    flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
    # 创建神经网络函数
    network = builder.create_network(flag)
    # 将onnx转化为engine
    parser = trt.OnnxParser(network, logger)
    if not parser.parse_from_file(str(onnx)):
        raise RuntimeError(f'failed to load ONNX file: {onnx}')

    inputs = [network.get_input(i) for i in range(network.num_inputs)] # 输入张量
    outputs = [network.get_output(i) for i in range(network.num_outputs)] # 输出张量
    for inp in inputs:
        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
    for out in outputs:
        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

    '''
    builder.create_optimization_profile() 函数创建一个优化配置,并使用 profile.set_shape() 函数为每个输入张量设置形状。
    在这里,im 是输入数据,inputs 是 TensorRT 网络的输入张量列表。
    '''
    if dynamic:
        if im.shape[0] <= 1:
            LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
        profile = builder.create_optimization_profile()
        '''
        profile.set_shape() 函数有三个参数,分别是输入张量的名称、最小形状、最优形状和最大形状。
        在这里,最小形状和最优形状都设置为 (1, *im.shape[1:]),即 batch size 为 1,其他维度与输入数据相同。
        而最大形状则为 (max(1, im.shape[0] // 2), *im.shape[1:]),即 batch size 为输入数据的一半,其他维度与输入数据相同。
        这样设置的目的是为了在 batch size 变化时,能够自适应调整输入张量的形状。
        '''
        for inp in inputs:
            profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
        config.add_optimization_profile(profile)

    LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
    if builder.platform_has_fast_fp16 and half:
        config.set_flag(trt.BuilderFlag.FP16)
    with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
        # 序列化写入
        t.write(engine.serialize())
    return f, None

转成onnx的代码,可以用pytorch本身的torch.onnx.export
https://zhuanlan.zhihu.com/p/498425043 详解

def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    check_requirements('onnx>=1.12.0')
    import onnx

    LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
    f = file.with_suffix('.onnx')

    output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
    if dynamic:
        dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}}  # shape(1,3,640,640)
        if isinstance(model, SegmentationModel):
            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
            dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)
        elif isinstance(model, DetectionModel):
            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)

    torch.onnx.export(
        model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
        im.cpu() if dynamic else im,
        f,
        verbose=False,
        opset_version=opset,
        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
        input_names=['images'], # 指定输入
        output_names=output_names, # 指定输出
        dynamic_axes=dynamic or None) # 指定输入输出张量的哪些维度是动态的。

    # Checks
    model_onnx = onnx.load(f)  # load onnx model
    onnx.checker.check_model(model_onnx)  # check onnx model

    # Metadata
    d = {'stride': int(max(model.stride)), 'names': model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)
    onnx.save(model_onnx, f)

    # Simplify
    if simplify:
        try:
            cuda = torch.cuda.is_available()
            check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
            import onnxsim

            LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
            model_onnx, check = onnxsim.simplify(model_onnx)
            assert check, 'assert check failed'
            onnx.save(model_onnx, f)
        except Exception as e:
            LOGGER.info(f'{prefix} simplifier failure: {e}')
    return f, model_onnx

Export
会花费一会时间
onnx不需要GPU进行推理,但是tensorRT 需要 GPU 进行推理

# 要使用half,必须指定device
python export.py --data data/coco128.yaml --weights yolov5s.pt --include engine --half --int8 --device 0
# 输入输出
TensorRT: input "images" with shape(1, 3, 640, 640) DataType.HALF
TensorRT: output "output0" with shape(1, 25200, 85) DataType.HALF
TensorRT: building FP16 engine as yolov5s.engine

通过这句话就可以通过tensorrt加速了

python detect.py --weights yolov5s.engine --source data/images --half --device 0

Flask API 封装

创建client文件client.py,service文件service.py。
service的代码,传递图片的方式是base64编码,传递数据的方式是json,需要对detect.py做一点小改动,因为我们只需要处理一张图片。

from flask import Flask, jsonify #flask库
from flask import request
import base64
from datetime import datetime
from detect import run
'''api的调用返回
返回生成的结果图片,仅支持一张图片
'''
app = Flask(__name__)  # 创建一个服务,赋值给APPflask
@app.route('/inference', methods=['Get',"Post"])
def inference():
    source = request.json
    uid = source.get('uid')
    data = source.get("data")

    # 解析一张图片
    # 临时存储
    with open("tmp.jpg", "wb") as f:
        img = base64.b64decode(data["imgs"])
        f.write(img)

    # 将tmp_img_path传入检测函数中,每一次检测都要加载权重,影响较大
    return_img = run(source="tmp.jpg",nosave=True) # numpy 格式,cv2可以直接保存
    # return_img = return_img.tobytes() # 转bytes
    return_img = base64.b64encode(return_img).decode('utf8') # str

    # 赋值
    response = {}
    response["data"] = {}
    response["uid"] = uid
    response["data"]["imgs"] = return_img
    response["data"]["response_date"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    return jsonify(response)

if __name__ == "__main__":
    app.run(host="127.0.0.1",port=8802,debug=True)

client代码

import requests
import base64
import cv2
import numpy as np
from datetime import datetime
'''模拟表单的提交
将图片转为base64格式传输
'''
if __name__ == "__main__":
    url = "http://127.0.0.1:8802/inference" # api
    require_data = {
        "uid":1,
        "data":{
            "imgs":None,
            "require_date":datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            }
    }

    with open("\data\images\R-C.jpg", "rb") as f:
        base64_data = base64.b64encode(f.read())  # 使用base64进行加密
        require_data["data"]["imgs"] = base64_data.decode('utf8') # str

    # 处理返回数据
    response = requests.get(url,json = require_data)
    if response.ok:
        print(response)
        # 解码
        img = response.json()["data"]["imgs"] # str
        uid = response.json()["uid"]
        img = base64.b64decode(img) # bytes
        # 保存
        with open("download.jpg","wb") as f:
            f.write(img)
        print("下载保存成功")
    else:
        print(response.status_code)

这中间可能会出现图片保存损坏的情况,可以在返回信息的时候用numpy.tolist格式返回图片内容。
最后相对应的文件夹中会有结果图片与一张临时图片。
Yolov5-6.0官方源代码骨干解析,并使用TensorRT加速推理,最后封装成API_第3张图片
需要对detect.py做个小小的改动,返回一张图片

  # Process predictions 140行左右
        for i, det in enumerate(pred):  # per image
        	...
        	return im0 # numpy

最后的效果download.jpg
Yolov5-6.0官方源代码骨干解析,并使用TensorRT加速推理,最后封装成API_第4张图片

你可能感兴趣的:(YOLO,flask,python)