- Spring Boot + ONNX Runtime模型部署
文章目录前言一、模型导出二、Java推理引擎选型三、SpringBoot实战3.1核心架构3.2分层架构详细实现1.Controller层-请求入口2.Service层-核心业务流程3.关键组件深度优化四、云原生部署:Docker+Kubernetes总结前言在AI浪潮席卷全球的今天,Java工程师如何守住后端主战场?模型部署正是Java工程师融入AI领域的方向。为什么Java工程师必须掌握模型部
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- vLLM调度部署Qwen3
你好,此用户已存在
人工智能linux大模型
vLLM介绍在之前的文章中,我们介绍了如何使用ollama部署qwen3,一般而言,ollama适合个人部署使用,在面对企业级的模型部署时,一般更建议使用vLLMvLLM(高效大语言模型推理库)是一个专为大语言模型(LLMs)优化推理速度的开源框架,由斯坦福大学系统研究组开发。其核心目标是通过创新的软件和算法设计,大幅提升LLM在生成文本时的吞吐量和效率,尤其适用于处理高并发的推理请求。从各种基准
- 从源码编译 ONNX Runtime GPU 1.18.2 并验证 CUDA 推理成功
草莓奶忻
SLAM基础Deep+SLAMubuntu
文章目录从源码编译ONNXRuntimeGPU1.18.2并验证CUDA推理成功【实测环境+完整步骤】✅环境信息(实测成功)第一步:获取源码️第二步:编译命令参数说明(重点)第三步:安装构建好的`.whl`✅第四步:验证是否成功启用GPU方法1:命令行快速验证方法2:加载模型并查看执行设备⚠️常见警告说明(可忽略)✅总结从源码编译ONNXRuntimeGPU1.18.2并验证CUDA推理成功【实测
- 如何构建AI原生应用领域的高效SaaS架构
AI原生应用开发
AI-native架构ai
如何构建AI原生应用领域的高效SaaS架构关键词:AI原生应用、SaaS架构、微服务、容器化、机器学习模型部署、自动扩展、多租户隔离摘要:本文深入探讨如何构建面向AI原生应用的高效SaaS架构。我们将从基础概念出发,逐步解析AISaaS架构的核心组件、设计原则和最佳实践,并通过实际案例展示如何实现高性能、可扩展的AI服务交付平台。文章将涵盖从基础设施选择到模型部署,从多租户隔离到自动扩展的全方位技
- YOLOV10的tensorrt C++部署
dddccc1234
YOLO
根据博客进行python版本安装YOLOv10最全使用教程(含ONNX和TensorRT推理)-CSDN博客并将pt转为onnx:yoloexportmodel=yolov10s.ptformat=onnxopset=13simplify然后采用:https://github.com/hamdiboukamcha/yolov10-tensorrt.git进行c++编译配置好cuda11.7tens
- 使用 Xinference 命令行工具(xinference launch)部署 Nanonets-OCR-s
没刮胡子
Linux服务器技术人工智能AI软件开发技术实战专栏ocr
使用Xinference命令行工具(xinferencelaunch)部署Nanonets-OCR-s一、核心优势与适用场景通过xinferencelaunch命令可直接在命令行完成模型部署,无需编写Python代码,适合快速验证或生产环境批量部署。二、部署步骤:从命令行启动模型1.确认环境与依赖已安装Xinference:pipinstall"xinference[all]"GPU显存≥9GB(
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- ss928v100模型的导出、量化和转换
yunken28
python开发语言
1、yolov8导出为onnxfromultralyticsimportYOLOmodel=YOLO("./best.pt")model.export(format="onnx",imgsz=640,dynamic=False,simplify=True,opset=11,batch=1,half=False)以下是model.export()方法各参数的详细解释:format="onnx"指
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 解密大模型全栈开发:从搭建环境到实战案例,一站式攻略
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能大模型全栈开发
目录大模型基础概念什么是大模型?大模型的发展历程大模型的类型大模型全栈开发环境搭建硬件需求软件环境配置云服务选择大模型应用开发流程模型选择策略提示工程(PromptEngineering)模型微调(Fine-tuning)参数高效微调(PEFT)大模型应用架构设计基本应用架构RAG(检索增强生成)系统Agent系统设计大模型应用部署与优化模型部署选项模型优化技术性能监控与调优大模型应用实战案例智能
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- onnx-web + yolov8n 在视频流里做推理
CHEN_RUI_2200
人工智能YOLO
顺着我上一篇文章使用onnxruntime-web运行yolov8-nano推理继续说,有朋友在问能不能接入视频流动,实时去识别物品。首先使用getUserMedia获取摄像头视频流getUserMediaAPI可以访问设备的摄像头和麦克风。你可以使用这个API获取视频流,并将其显示在页面上的标签中。注意事项:浏览器支持:getUserMedia被现代浏览器大多数支持,但在一些旧版浏览器上可能不兼
- 使用YOLOv5-ONNX-PyQT-EXE: 全栈式对象检测应用的构建与部署
使用YOLOv5-ONNX-PyQT-EXE:全栈式对象检测应用的构建与部署去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,实时对象检测是一个至关重要的任务。是一个开源项目,它将流行的YOLOv5对象检测模型集成到ONNX(OpenNeuralNetworkExchange)中,并通过PyQT构建了一个可执行的应用程序,使得非开发人员也能轻松地进行对象检测。项目简
- 从实验到生产:DeepSeek大模型工程化部署的关键步骤与风险控制
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言:大模型部署迈入“工程化时代”随着DeepSeek等开源大语言模型(LLM)的发展,大模型不再是AI实验室的专属工具,越来越多的企业正尝试将其纳入业务生产系统,应用于客服问答、合同审查、数据分析、自动写作等场景。但模型的能力≠可用的系统。从模型下载到模型上线,中间隔着“部署的鸿沟”:资源配置、服务稳定性、响应效率、安全控制、上线合规……一
- DeepSeek 部署中的常见问题及解决方案:从环境配置到性能优化的全流程指南
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:大模型部署的现实挑战随着大模型技术的发展,以DeepSeek为代表的开源中文大模型,逐渐成为企业与开发者探索私有化部署、垂直微调、模型服务化的重要选择。然而,模型部署的过程并非“一键启动”那么简单。从环境依赖、资源限制,到推理性能和服务稳定性,开发者往往会遇到一系列“踩坑点”。本文将系统梳理DeepSeek模型在部署过程中的典型问题与实践经
- MI300X vs H100:DeepSeek 部署在哪个 GPU 上性价比最高?
卓普云
技术科普AIGC人工智能DeepseekH100MI300x
随着大模型部署和推理变得越来越普及,开发者和企业对GPU的选择也越来越挑剔。特别是像DeepSeek这样的开源模型家族,从轻量级的6.7B,到动辄上百亿甚至数百亿参数的超大模型,背后对算力和显存的要求各不相同。最近,一则重磅消息在AI圈引起了轩然大波:连AI巨头OpenAI也在探索并计划使用AMDInstinctMI300xGPU!这无疑是对AMD这款高性能GPU的巨大认可,也预示着它将在AI算力
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- 【高频考点精讲】前端AI集成实战:从TensorFlow.js到模型部署
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端AI集成实战:从TensorFlow.js到模型部署作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- Yolov5 ONNX Runtime 的 Python 部署
爱钓鱼的歪猴
#目标检测模型部署YOLO
这里使用的yolov56.2,使用export.py很方便地得到onnx格式的模型。然后用onnxruntime推理框架在Python上进行部署。主要是为了测试模型的准确,模型部署的最终是用C++部署,从而部署在嵌入式设备等。整个代码分为四个部分:1、对输入进行预处理;2、onnxruntime推理得到输出;3、对输出进行后处理4、画预测框代码的难点是nms处理。代码尚存在的缺陷是,将输入图像处理
- RapidOCR4j项目学习
cmdch2017
学习
https://rapidai.github.io/RapidOCRDocs/install_usage/api/RapidOCR/#_1功能实现多平台OCR识别:支持Windows、Linux、macOS(包括Intel和ARM架构)多种图片输入方式:支持图片路径(Path)、BufferedImage、byte[]、OpenCV的Mat四种输入类型模型推理:通过ONNXRuntime加载和推理
- 开源TTS模型:VITS(2025.3)
u013250861
#VITS
VITS经典项目:FaceBook开源,1000+语言,mms-meta/MMSwenet社区,onnx和
- yolov11转ncnn
model2005
YOLOncnn
yolo模型pt格式文件转ncnn,以适用于移动端的部署。原先要经过onnx,onnxsim等转换,cmake编译,现直接可生成(如何从YOLO11导出到NCNN以便顺利部署)。fromultralyticsimportYOLO#LoadtheYOLO11modelmodel=YOLO("yolo11s.pt")#ExportthemodeltoNCNNformatmodel.export(for
- DeepSeek 实战项目:构建专业领域智能问答系统
XQR.小白
DeepSeek实战项目精讲python人工智能
目录1.项目概述与背景2.环境准备与模型部署3.专业知识库构建5.交互式界面开发6.系统优化与扩展7.项目部署与运维项目总结与展望1.项目概述与背景在当今信息爆炸的时代,专业领域的知识获取面临着信息过载和检索效率低下的问题。本项目旨在利用DeepSeek模型构建一个专业领域的智能问答系统,帮助用户快速准确地获取所需信息。通过本项目,你将学习如何:部署和配置DeepSeek大语言模型构建专业领域知识
- 解决YOLO模型从Python迁移到C++时目标漏检问题——跨语言部署中的关键陷阱与解决方案
马里马里奥-
YOLOpythonc++
问题背景当我们将Python训练的YOLO模型部署到C++环境时,常遇到部分目标漏检问题。这通常源于预处理/后处理差异、数据类型隐式转换或模型转换误差。本文通过完整案例解析核心问题并提供可落地的解决方案。一、常见原因分析预处理不一致Python常用OpenCV(BGR通道,归一化[0,1][0,1][0,1])C++可能误用其他库(如RGB通道,归一化[−1,1][-1,1][−1,1])差异值=
- C++、OpenVINO部署YOLOv5模型的指南(Windows)
马里马里奥-
c++openvinoopencv
C++、OpenVINO部署YOLOv5模型的指南(Windows)一、环境准备硬件要求软件配置二、模型转换流程1.导出ONNX模型2.转换为OpenVINOIR格式三、C++推理实现核心代码结构后处理关键算法四、性能优化技巧五、常见问题解答1:输出形状不匹配2:推理速度不达标六、部署效果展示七、结语一、环境准备硬件要求Intel第6代以上CPU16GB内存50GB可用磁盘空间软件配置Visual
- 基于通义大模型的智能客服系统构建实战:从模型微调到API部署
大熊计算机
开发实战语言模型人工智能
1引言本文将深入探讨基于通义大模型的智能客服系统构建全流程,从数据准备、模型微调、性能优化到API部署和系统集成。不同于理论概述,本文将通过实战案例、代码演示和性能数据对比,展示每个环节的技术细节与工程实践。文章面向具备Python和深度学习基础的开发者,重点解决以下核心问题:如何针对客服场景准备和优化训练数据?如何高效微调通义大模型以适配特定业务需求?如何解决大模型部署中的延迟和并发挑战?如何构
- AI人工智能领域神经网络的云计算集成应用
AI大模型应用实战
人工智能神经网络云计算ai
AI人工智能领域神经网络的云计算集成应用关键词:神经网络、云计算、AI集成、分布式训练、模型部署、弹性计算、深度学习摘要:本文深入探讨了神经网络在云计算环境中的集成应用,从基础概念到实际部署,全面分析了云计算如何赋能AI神经网络的发展。文章将详细介绍神经网络与云计算的结合原理、关键技术实现、性能优化策略以及典型应用场景,并通过实际案例展示如何利用云平台高效运行神经网络模型。最后,我们将展望这一领域
- BERT模型微调全攻略:从数据准备到模型部署
AI智能探索者
bert人工智能深度学习ai
BERT模型微调全攻略:从数据准备到模型部署关键词:BERT模型、模型微调、数据准备、模型训练、模型部署摘要:本文全面介绍了BERT模型微调的整个流程,从数据准备开始,逐步讲解了数据预处理、模型训练以及最终的模型部署等关键步骤。通过通俗易懂的语言和详细的代码示例,帮助读者理解BERT模型微调的原理和操作方法,以便在实际项目中更好地应用BERT模型。背景介绍目的和范围我们的目的是让大家学会如何对BE
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23