- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 【大模型开发】ONNX 格式的大模型在 Android 上的部署与测试
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习android大模型部署本地推理引擎大模型开发机器学习边缘设备
以下内容将以ONNX格式的大模型在Android上的部署与测试为核心,提供一套可运行的示例(基于AndroidStudio/Gradle),并结合代码进行详细讲解。最后会给出一些针对在移动设备上部署ONNX推理的优化方法和未来建议。目录整体流程概述准备工作2.1ONNX模型准备2.2Android项目准备在Android上使用ONNXRuntime3.1添加依赖3.2项目结构说明3.3代码示例运行
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- 大数据开发之Kubernetes篇----安装部署Kubernetes&dashboard
豆豆总
kubernetes
Kubernetes简介由于公司有需要,需要将外后的服务外加Tensorflow模型部署加训练全部集成到k8s上,所以特意记录下这次简单部署的过程。k8s安装部署首先,我们在部署任何大型的组件前都必须要做的事情就是关闭防火墙和设置hostname了vi/etc/hostsk8s001xxx.xxx.xxx.xxk8s002xxx.xxx.xxx.xx...systemctlstopfirewall
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 【大模型开发】大模型转换为 NCNN 格式并在 微信小程序 中进行调用
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习微信小程序小程序NCNN小程序调用大模型大模型部署大模型优化部署微信小程序
以下内容将介绍如何将大模型转换为NCNN格式并在微信小程序中进行调用。我们会从整体流程、模型转换工具、NCNNWebAssembly(WASM)编译与集成、小程序前端代码示例等方面进行详细讲解,并在最后给出优化方向与未来建议。目录背景与整体流程概述准备工作2.1常见模型格式与转换思路2.2环境与工具安装模型转换为NCNN格式3.1以ONNX模型为例3.2使用onnx2ncnn工具NCNN在微信小程
- mysql创建新表,同步数据
hitsz_syl
mysql数据库
importosimportargparseimportglobimportcv2importnumpyasnpimportonnxruntimeimporttqdmimportpymysqlimporttimeimportjsonfromdatetimeimportdatetimeos.environ[“CUDA_VISIBLE_DEVICES”]=“0”#使用GPU0defget_connec
- torch-torchvision-python版本对应问题
Thirtyaoe
python深度学习pytorch
module‘torch.onnx.symbolic_helper’hasnoattribute‘quantized_args’今日在联系pytorch时,importtorchvision时报错:module‘torch.onnx.symbolic_helper’hasnoattribute‘quantized_args’查阅后发现是版本不兼容的问题,于是查看了正确的对应版本,对自己的进行修改。
- 基于 KTransformers的DeepSeek-R1 本地部署方案,成本骤降32倍!
爱科技Ai
LLM人工智能
随着DeepSeek-R1模型在全球范围内的流行,越来越多的用户开始在本地尝试部署该模型。然而,高昂的硬件需求和成本让许多公司望而却步。本文将深入探讨DeepSeek-R1部署中的挑战,并介绍一款创新框架KTransformers,它能够显著降低大规模模型部署的成本并提高推理效率,从而帮助更多中小企业有效部署此类高级AI模型。本地部署“成本骤降32倍”,助力R1真正落地「中小企业」中!1.Deep
- rapidocr-onnxruntime库及在open-webui上传PDF 图像处理 (使用 OCR)应用
原野AI
大模型部署pdfocr深度学习open-webui
背景rapidocr-onnxruntime是一个跨平台的OCR库,基于ONNXRuntime推理框架。目前已知运行速度最快、支持最广,完全开源免费并支持离线快速部署的多平台多语言OCR。缘起:百度paddle工程化不是太好,为了方便大家在各种端上进行ocr推理,我们将它转换为onnx格式,使用Python/C++/Java/Swift/C#将它移植到各个平台。名称来源:轻快好省并智能。基于深度学
- 【Rust基础】Rust后端开发常用库
勇敢牛牛_
rust开发语言后端
使用Rust有一段时间了,期间尝试过使用Rust做后端开发、命令行工具开发,以及做端侧模型部署,也尝试过交叉编译、FFI调用等,也算是基本入门了。在用Rust做后端接口开发时,常常会找不到一些合适库,而这些库在Java中却很常见,于是在此汇总一下后Rust后端开发中常用的一些库。基础框架首先是基础web开发框架,在Java中,最常用的就是Spring了,而Spring其实不单单是一个开发框架,而是
- DeepSeek大模型部署指南
点我头像干啥
Ai人工智能python分类数据挖掘深度学习
在当今人工智能快速发展的时代,大模型的应用越来越广泛。DeepSeek作为一款高性能的大模型,支持长文本、多模态、代码生成等复杂任务,已经在多个领域展现出强大的能力。本文将详细介绍DeepSeek大模型的部署流程,帮助读者在自己的环境中高效地使用这一先进工具。一、DeepSeek大模型简介DeepSeek是一款专注于大模型与AGI(人工智能通用智能)研究的高性能基座模型。它支持长文本处理、多模态理
- 轻量级多模型部署实践:Ollama 与 vLLM 快速构建高效 AI 工作流20250306
Narutolxy
智浪初航人工智能
轻量级多模型部署实践:Ollama与vLLM快速构建高效AI工作流本文将详细介绍如何在MacOS与Ubuntu环境下使用Ollama与vLLM进行轻量级多模型部署,包括模型并行推理、安全与性能优化的实践经验,帮助初学者快速上手。一、Ollama部署与优化最佳实践MacOS快速部署安装Ollama(如已安装可跳过)使用Homebrew快速安装Ollama:brewinstallollama模型拉取与
- backbone和head分开转onnx的优势
yuweififi
人工智能深度学习机器学习
模型转换为ONNX格式时,将其分成backbone和head两个部分,通常是出于以下原因:1.模块化设计backbone通常是模型的特征提取部分(例如卷积神经网络的主干部分),负责从输入数据中提取高级特征。head是模型的输出部分,负责根据backbone提取的特征生成最终的预测结果(例如分类、检测、分割等)。将模型分成两部分可以实现模块化设计,便于在不同任务中复用backbone或head。例如
- 【YOLOv11[基础]】目标检测OD | 导出ONNX模型 | ONN模型推理以及检测结果可视化 | python
Jackilina_Stone
【改进】YOLO系列人工智能python计算机视觉YOLO深度学习目标检测
本文将导出YOLO11.pt模型对应的ONNX模型,并且使用ONNX模型推理以及结果的可视化。话不多说,先看看效果图吧!!!目录一导出ONNX模型二推理及检测结果可视化1代码2效果图
- onnx处理和TensorRT量化推理相关代码工具
天亮换季
人工智能算法深度学习
一.说明 在模型量化过程中,经常要使用一些工具对onnx或者量化后的模型(这里以TensorRT为例)进行推理,往往需要一些处理工具,比如:拆分或者合并onnx;修改onnx中的量算子QuantizeLinear的scale值;以及使用onnxruntime进行推理;TensorRT的序列化文件的inference;隐式量化生成量化校准表…现提供一些封装好的工具,作为记录,方便日后查阅使用"
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 深度学习基础-onnxruntime推理模型
yuweififi
深度学习人工智能
以下是一个完整的示例,展示如何加载ONNX模型、获取模型信息并运行推理:importonnxruntimeimportnumpyasnp#模型路径bev_head_onnx_path="path/to/your/bev_head.onnx"#加载模型session=onnxruntime.InferenceSession(bev_head_onnx_path)#获取模型元信息model_meta=
- 8.3 GPTQ量化技术:4倍压缩大模型显存,精度零损失!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
GPTQ量化技术:4倍压缩大模型显存,精度零损失!8.2GPTQ:专为GPT设计的模型量化算法一、模型量化技术背景在讨论GPTQ之前,我们需要先理解大模型部署面临的显存困境。以LLaMA-7B模型为例:FP32精度显存占用:28GBFP16精度显存占用:14GBINT8量化后显存占用:7GBINT4量化后显存占用:3.5GB
- 人工智能混合编程实践:C++调用Python ONNX进行YOLOv8推理
FriendshipT
人工智能混合编程实践人工智能c++pythonYOLOONNX目标检测
人工智能混合编程实践:C++调用PythonONNX进行YOLOv8推理前言相关介绍Python简介C++简介ONNX简介YOLOv8简介前提条件实验环境项目结构C++调用PythonONNX进行YOLOv8推理C++调用Python的相关dll代码framework.hpch.hcxx_pythonModule.hdllmain.cpppch.cppcxx_pythonModule.cppC++
- 如果,你想找 AI大模型相关的工作,这三个建议你一定要看!
我爱学大模型
人工智能chatgptAI大模型AI大模型入门转行程序员
01各种大厂小厂创业团队和AI擦边的面试难度,由难到简单,依次是:大模型算法(⭐⭐⭐⭐⭐)模型部署加速(⭐⭐⭐⭐)RAG等相关技术(⭐⭐⭐)纯应用(⭐⭐)Prompt工程师等其他自媒体(⭐)会简单应用就行02这结果方向,B站找几个视频看看,这里推荐用Qwen7B,开源的模型,一个3060都能跑。例如这个,如何微调Qwen开源模型。https://www.bilibili.com/video/BV1
- ONNX GraphSurgeon详细介绍
Lntano__y
模型部署算法
ONNXGraphSurgeon(ONNX-GS)是一个用于操作和修改ONNX(OpenNeuralNetworkExchange)模型图的Python库。它允许开发者在ONNX模型的图结构中进行修改、优化、插入节点、删除节点以及其他图结构操作,是在深度学习推理部署过程中非常有用的工具。ONNXGraphSurgeon常用于TensorRT中,用来优化和调整ONNX模型,以便于模型可以高效地在GP
- langchain4j+ONNX小试牛刀
langchain4j
序本文主要研究一下langchain4j结合ONNX进行得分重排步骤pom.xmldev.langchain4jlangchain4j-onnx-scoring1.0.0-beta1下载模型wgethttps://hf-mirror.com/Xenova/ms-marco-MiniLM-L-6-v2/resolve/main/onnx/model_quantized.onnx?download=t
- kokoro 82M参数的声音模型kokoro-onnx,支持中文
skywalk8163
人工智能人工智能
kokoro大约是官网:github.comonnx推理官网:GitHub-thewh1teagle/kokoro-onnx:TTSwithkokoroandonnxruntime可以参考这个文档使用:Kokoro-82M实战:最强TTS开源模型Windows本地极简部署完全攻略_kokorotts本地部署-CSDN博客实践下来英文不错,中文还欠缺些。kokoro82M参数的声音模型介绍❤️Kok
- 基于Flask和VUE的YOLOv5目标检测模型部署
薄泳蕙Howard
基于Flask和VUE的YOLOv5目标检测模型部署基于Flask和VUE的YOLOv5目标检测模型部署本资源文件提供了一个基于Flask开发后端、VUE开发前端框架的完整项目,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能项目地址:https://gitcode.com/open-source-toolkit/20e
- 基于Flask和VUE的YOLOv5目标检测模型部署:轻松实现WEB端目标检测
咎尉裕Lilah
基于Flask和VUE的YOLOv5目标检测模型部署:轻松实现WEB端目标检测【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能项目地址:https://gitcod
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- 《Ollama :开启本地大模型部署新时代》:此文为AI自动生成
空云风语
人工智能python网络人工智能
《Ollama:开启本地大模型部署新时代》:此文为AI自动生成走进Ollama在大模型技术迅猛发展的当下,Ollama如同一颗耀眼的新星,在众多大模型中崭露头角。它以其独特的魅力,吸引了无数开发者和科技爱好者的目光,成为了本地大模型部署领域中备受瞩目的存在。大模型领域的发展日新月异,从最初的探索到如今的广泛应用,每一次突破都带来了全新的可能性。而Ollama的出现,无疑为这一领域注入了新的活力。它
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- YOLOv8目标检测推理流程及C++代码
吃鱼不卡次
YOLOonnxc++
这部分主要是使用c++对Onnx模型进行推理,边先贴代码,过段时间再详细补充下代码说明。代码主要分成三部分,1.main_det.cpp推理函数主入口;2.inference_det.h头文件及inference_det.cpp具体函数实现;3.CMakeList.txt.1.main_det推理配置信息全部写在config.txt中,执行代码时会读取该文本中配置信息来进行推理,config.tx
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23