- 基于DeepSeek-R1的高效推理优化实战:从API封装到动态批处理
竹木有心
人工智能
引言在LLM(大语言模型)应用中,推理延迟和计算资源消耗是核心痛点。本文以DeepSeek-R1-7B模型为例,通过动态批处理、模型量化和异步推理三大技术,将单次推理耗时从2.3s降至0.4s,吞吐量提升6倍。所有代码均通过PyTorch2.1+验证。一、环境准备与模型加载优化1.1硬件感知的模型加载通过device_map自动分配计算资源,避免显存溢出fromtransformersimport
- darts框架使用
ME_Seraph
机器学习darts
文|Seraph高版本Pytorch问题运行test.py报错IndexError:invalidindexofa0-dimtensor.Usetensor.item()toconverta0-dimtensortoaPythonnumber解决:update函数的参数loss.data[0],prec1.data[0],prec5.data[0]等修改为loss.item(),prec1.ite
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 本地DeepSeek模型GGUF文件转换为PyTorch格式
搏博
pytorch人工智能python机器学习windows深度学习
接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。前提:已经部署好了Deep
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- MNIST Examples for GGML - Fully connected network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesFullyconnected
MNISTExamplesforGGML-Fullyconnectednetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Fullyconnectednetwork2.2.1.TotrainafullyconnectedmodelinPyTorchandsaveitasaGGUFfile2.2.2.Toevaluatethemod
- Python调用C语言动态库(DLL)结构体/指针/变量的方法
ENOCH_Q
PYTHONpythonc语言开发语言
文章目录前言一、如何生成C语言动态库DLL第一步:安装编译工具第二步:设计C代码第三步:编译成C语言动态库DLL二、如何使用C语言动态库第一步:python/pytorch调入DLL接口第二步:Python调用DLL函数第三步:Python测试函数三、完整程序与测试结果总结前言在使用python等进行数据处理时,有时需要使用C语言生成的动态库进行数据处理,比如有些算法已经用C语言实现,或有些函数处
- 动手学深度学习V2.0(Pytorch)——25. 使用块的网络 VGG
吨吨不打野
动手学深度学习pytorch深度学习pytorch网络
文章目录P1讲解1.1基本介绍1.2总结P2代码实现2.1报错解决2.2windows下专用/共享GPU内存P3Q&AP4.其他4.1ImageNetClassificationLeaderboard4.2VGG其它讲解P1讲解1.1基本介绍视频地址:https://www.bilibili.com/video/BV1Ao4y117Pd教材文档:https://zh-v2.d2l.ai/chapt
- 【Python】解决PyTorch报错:PytorchStreamReader failed reading zip archive: failed finding central的解决方案
I'mAlex
pythonpytorch开发语言
在使用PyTorch时,遇到“PytorchStreamReaderfailedreadingziparchive:failedfindingcentral”错误通常是由于损坏的模型文件或不兼容的文件版本导致的。这种问题在加载模型或数据时比较常见。以下是一些排查和解决该问题的步骤。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- PyTorch Lightning LightningDataModule 介绍
qq_27390023
pytorch人工智能python
LightningDataModule是PyTorchLightning提供的数据模块,用于统一管理数据加载流程(包括数据准备、预处理、拆分、批量加载等)。它的核心作用是将数据处理逻辑与模型解耦,提高代码的可复用性和可读性。1.LightningDataModule的作用✅封装数据预处理:数据下载、清理、转换等步骤都可以在LightningDataModule中完成。✅统一数据加载流程:确保训练、
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- 实验随记2-Pytorch Lightning多机多卡训练
晓岚和雪
实验随记pytorch人工智能python深度学习分布式
本文章主要收录笔者在阅读时发现的一些比较优质的多机多卡训练教程~~,由于pytorchLightning多机多卡示例很少,因此需要等笔者最近做完实验验证后才能更新示例。不断完善中…~~及多机多卡训练细节。任务需求:实现多机多卡训练,模型可能继承torch.nn或者torch.lightning。示例实现5节点4GPU共计20卡训练。使用pytorch_lightning==1.9.4存在bug:启
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 使⽤MATLAB进⾏⽬标检测
唐BiuBiu
机器学习matlab开发语言目标检测深度学习
目录数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语⼈⽣苦短,我⽤MATLAB。Pytorch在深度学习领域占据了半壁江⼭,最主要的原因是⽣态完善,⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch还好⽤。从数据集划分到训练,再到性能验证和画图,仅仅使⽤了⼏⼗⾏代码。炼丹师们终于可以解放编码时间,把⾃⼰的精⼒放在摸⻥(划掉)算法本身上了。下
- 基于PyTorch的生成对抗网络入门(5)——利用PyTorch搭建条件生成对抗网络(CGAN)超详解
wendy_ya
PyTorchpythonpytorch生成对抗网络深度学习python神经网络
目录一、案例描述二、代码详解2.1构建真实数据集2.2创建生成虚假数据2.3构建判别器2.3.1创建生成虚假标签2.3.2判别器类2.3.3测试判别器2.4构建生成器2.4.1生成器类2.4.2测试生成器2.5训练GAN2.6测试生成器的生成效果一、案例描述本文介绍利用条件生成对抗网络(CGAN)进行手写数字生成。比如说,要求生成不同的,但是都代表某一个数字的图像。二、代码详解2.1构建真实数据集
- Pytorch的自动求导模块
zoujiahui_2018
pytorch人工智能python
文章目录torch.autograd.backward()基本用法非标量张量的反向传播保留计算图指定输入张量高阶梯度计算与y.backward()的区别torch.autograd.grad()基本用法非标量张量的梯度高阶梯度计算多输入、多输出的梯度计算未使用的输入张量保留计算图与backward()的区别torch.autograd.backward()该函数实现自动求导梯度,函数如下:torc
- Python 中如何 import 绝对路径的模块
斐硕人
僧旅python开发语言后端
问题:jupter-lab使用时用到其他文件夹下的一个自定义模块,试图使用绝对路径导入解决方式:importsyssys.path.append('模块所在路径')import路径下需要的模块使用场景:importsyssys.path.append('/Users/feishuoren/Projects/pytorch_learning/')#自定义模块fromtorchLearningimpo
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- conda 装tensorboardx_【工欲善其事】TensorboardX的使用
weixin_39719042
conda装tensorboardx
“我不喜欢Tensorflow,但这并不妨碍我使用tensorboard”上一篇文章(https://zhuanlan.zhihu.com/p/39849027),和大家简单地聊了一下关于如何在训练过程中有序地组织log问题。今天,想和大家简单地谈谈tensorboard的使用。经过社区的努力,目前PyTorch也可以使用tensorboard了。在训练过程中实时地观察loss/accuracy曲
- Pytorch实现一个简单DeepSeek中的MLA多头潜在注意力架构
DukeYong
DeepSeek
首先,MLA是什么?可能是指Multi-HeadLocalAttention,即多头局部注意力,这种机制通常用于减少计算量,特别是在处理长序列时,每个头只关注局部区域。比如每个token只注意其周围的一定窗口内的其他token,而不是全局。这可能与传统的Transformer中的滑动窗口或局部注意力类似。接下来,我需要考虑如何将局部注意力与多头机制结合。每个注意力头可能有不同的局部窗口,或者共享相
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那