在接口服务中,如果每次都进行数据库查询,那么必然会给数据库造成很大的并发压力,所以需要为接口添加缓存,缓存技术选用Redis,并且使用Redis集群,Api使用的是Spring-Data-Redis。
#拉取镜像
docker pull redis:5.0.2
#创建容器
docker create --name redis-node01 -v /opt/redis/data/node01:/data -p 6379:6379 redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-01.conf
docker create --name redis-node02 -v /opt/redis/data/node02:/data -p 6380:6379 redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-02.conf
docker create --name redis-node03 -v /opt/redis/data/node03:/data -p 6381:6379 redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-03.conf
#启动容器
docker start redis-node01 redis-node02 redis-node03
#开始组建集群
#进入redis-node01进行操作
docker exec -it redis-node01 /bin/bash
#在容器内组建集群(没有replicas,即没有分片,全是master主节点)
redis-cli --cluster create 172.17.0.1:6379 172.17.0.1:6380 172.17.0.1:6381 --cluster-replicas 0
这时候出现连接不到redis节点的问题,我们尝试使用容器的ip地址
#查看容器的ip地址
#172.17.0.4
docker inspect redis-node01
#172.17.0.5
docker inspect redis-node02
#172.17.0.6
docker inspect redis-node03
#再次进入redis-node01进行操作
docker exec -it redis-node01 /bin/bash
#组建集群(注意端口的变化)
redis-cli --cluster create 172.17.0.4:6379 172.17.0.5:6379 172.17.0.6:6379 --cluster-replicas 0
我们在redis容器中使用CLUSTER NODES
来查看该集群信息:
我们可以看到,集群中节点的ip地址是docker分配的地址,在外部客户端是没有办法访问到的。我们需要使用docker的网络类型进行操作。
docker的网络类型
host模式创建的容器没有自己独立的网络命名空间,是和物理机共享一个Network Namespace,并且共享物理机的所有端口与IP。但是它将容器直接暴露在公共网络中,是有安全隐患的。但是目前我们只能使用这种方法。
最终版的Redis集群
#创建容器
docker create --name redis-node01 --net host -v /opt/redis/data/node01:/data redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-01.conf --port 6379
docker create --name redis-node02 --net host -v /opt/redis/data/node02:/data redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-02.conf --port 6380
docker create --name redis-node03 --net host -v /opt/redis/data/node03:/data redis:5.0.2 --cluster-enabled yes --cluster-config-file nodes-node-03.conf --port 6381
#启动容器
docker start redis-node01 redis-node02 redis-node03
#开始组建集群
#进入redis-node01进行操作
docker exec -it redis-node01 /bin/bash
#组建集群(172.16.124.131是主机的ip地址)
redis-cli --cluster create 172.16.124.131:6379 172.16.124.131:6380 172.16.124.131:6381 --cluster-replicas 0
外部测试连接,成功!
1.导入相关依赖
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
<dependency>
<groupId>redis.clientsgroupId>
<artifactId>jedisartifactId>
<version>2.9.0version>
dependency>
<dependency>
<groupId>commons-iogroupId>
<artifactId>commons-ioartifactId>
<version>2.6version>
dependency>
2.编写配置文件
# redis集群配置
spring.redis.jedis.pool.max-wait = 5000
spring.redis.jedis.pool.max-Idle = 100
spring.redis.jedis.pool.min-Idle = 10
spring.redis.timeout = 10
spring.redis.cluster.nodes = 172.16.124.131:6379,172.16.124.131:6380,172.16.124.131:6381
spring.redis.cluster.max-redirects=5
3.编写properties类
package org.fechin.haoke.dubbo.api.config;
import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;
import java.util.List;
@Component
@ConfigurationProperties(prefix = "spring.redis.cluster")
@Data
public class ClusterConfigurationProperties {
private List<String> nodes;
private Integer maxRedirects;
}
4.编写配置类
package org.fechin.haoke.dubbo.api.config;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisClusterConfiguration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisClusterConfig {
@Autowired
private ClusterConfigurationProperties clusterProperties;
@Bean
public RedisConnectionFactory connectionFactory() {
RedisClusterConfiguration configuration = new
RedisClusterConfiguration(clusterProperties.getNodes());
configuration.setMaxRedirects(clusterProperties.getMaxRedirects());
return new JedisConnectionFactory(configuration);
}
@Bean
public RedisTemplate<String, String> redisTemplate(RedisConnectionFactory redisConnectionfactory) {
RedisTemplate<String, String> redisTemplate = new RedisTemplate<>();
redisTemplate.setConnectionFactory(redisConnectionfactory);
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new StringRedisSerializer());
redisTemplate.afterPropertiesSet();
return redisTemplate;
}
}
4.编写测试类
package org.fechin.haoke.dubbo.api;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.Set;
/**
* @Author:朱国庆
* @Date:2020/2/15 16:41
* @Desription: haoke-manage
* @Version: 1.0
*/
@RunWith(SpringRunner.class)
@SpringBootTest
public class RedisTest {
@Autowired
private RedisTemplate<String, String> redisTemplate;
@Test
public void testSave() {
for (int i = 0; i < 100; i++) {
this.redisTemplate.opsForValue().set("key_" + i, "value_" + i);
}
Set<String> keys = this.redisTemplate.keys("key_*");
for (String key : keys) {
String value = this.redisTemplate.opsForValue().get(key);
System.out.println(value);
this.redisTemplate.delete(key);
}
}
}
实现缓存逻辑有两种方式:1.每个接口单独控制缓存逻辑;2.统一控制缓存逻辑。我们采用第二种方式。
1.编写拦截器
package org.fechin.haoke.dubbo.api.interceptor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.io.IOUtils;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.web.servlet.HandlerInterceptor;
import org.springframework.web.servlet.ModelAndView;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.Map;
@Component
public class RedisCacheInterceptor implements HandlerInterceptor {
private static ObjectMapper mapper = new ObjectMapper();
@Autowired
private RedisTemplate<String, String> redisTemplate;
/**
* 在请求到达之前执行,返回true就放行,返回false就不放行;
* @param request
* @param response
* @param handler
* @return
* @throws Exception
*/
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
if(StringUtils.equalsIgnoreCase(request.getMethod(), "OPTIONS")){
return true;
}
// 判断请求方式,get还是post还是其他。。。
if (!StringUtils.equalsIgnoreCase(request.getMethod(), "GET")) {
// 非get请求,如果不是graphql请求,放行
if (!StringUtils.equalsIgnoreCase(request.getRequestURI(), "/graphql")) {
return true;
}
}
// 通过缓存做命中,查询redis,redisKey ? 组成:md5(请求的url + 请求参数)
String redisKey = createRedisKey(request);
String data = this.redisTemplate.opsForValue().get(redisKey);
if (StringUtils.isEmpty(data)) {
// 缓存未命中
return true;
}
// 将data数据进行响应
response.setCharacterEncoding("UTF-8");
response.setContentType("application/json; charset=utf-8");
// 支持跨域
response.setHeader("Access-Control-Allow-Origin", "*");
response.setHeader("Access-Control-Allow-Methods", "GET,POST,PUT,DELETE,OPTIONS");
response.setHeader("Access-Control-Allow-Credentials", "true");
response.setHeader("Access-Control-Allow-Headers", "Content-Type,X-Token");
response.setHeader("Access-Control-Allow-Credentials", "true");
//缓存命中
response.getWriter().write(data);
return false;
}
public static String createRedisKey(HttpServletRequest request) throws
Exception {
String paramStr = request.getRequestURI();
Map<String, String[]> parameterMap = request.getParameterMap();
if (parameterMap.isEmpty()) {
paramStr += IOUtils.toString(request.getInputStream(), "UTF-8");
} else {
paramStr += mapper.writeValueAsString(request.getParameterMap());
}
String redisKey = "WEB_DATA_" + DigestUtils.md5Hex(paramStr);
return redisKey;
}
}
2.注册拦截器到Spring容器中
package org.fechin.haoke.dubbo.api.config;
import org.fechin.haoke.dubbo.api.interceptor.RedisCacheInterceptor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
@Configuration
public class WebConfig implements WebMvcConfigurer {
@Autowired
private RedisCacheInterceptor redisCacheInterceptor;
@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(this.redisCacheInterceptor).addPathPatterns("/**");
}
}
3.进行测试
我们发现如果是POST请求的话,会报400的错误
错误原因是,在拦截器中读取了输入流的数据,在request中的输入流只能读取一次,请求进入controller时候,输入流已经没有数据了,导致获取不到数据。
4.通过包装request解决
package org.fechin.haoke.dubbo.api.interceptor;
import org.apache.commons.io.IOUtils;
import javax.servlet.ReadListener;
import javax.servlet.ServletInputStream;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletRequestWrapper;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* 包装HttpServletRequest
*/
public class MyServletRequestWrapper extends HttpServletRequestWrapper {
private final byte[] body;
/**
* Construct a wrapper for the specified request.
*
* @param request The request to be wrapped
*/
public MyServletRequestWrapper(HttpServletRequest request) throws IOException {
super(request);
body = IOUtils.toByteArray(super.getInputStream());
}
@Override
public BufferedReader getReader() throws IOException {
return new BufferedReader(new InputStreamReader(getInputStream()));
}
@Override
public ServletInputStream getInputStream() throws IOException {
return new RequestBodyCachingInputStream(body);
}
private class RequestBodyCachingInputStream extends ServletInputStream {
private byte[] body;
private int lastIndexRetrieved = -1;
private ReadListener listener;
public RequestBodyCachingInputStream(byte[] body) {
this.body = body;
}
@Override
public int read() throws IOException {
if (isFinished()) {
return -1;
}
int i = body[lastIndexRetrieved + 1];
lastIndexRetrieved++;
if (isFinished() && listener != null) {
try {
listener.onAllDataRead();
} catch (IOException e) {
listener.onError(e);
throw e;
}
}
return i;
}
@Override
public boolean isFinished() {
return lastIndexRetrieved == body.length - 1;
}
@Override
public boolean isReady() {
// This implementation will never block
// We also never need to call the readListener from this method, as this method will never return false
return isFinished();
}
@Override
public void setReadListener(ReadListener listener) {
if (listener == null) {
throw new IllegalArgumentException("listener cann not be null");
}
if (this.listener != null) {
throw new IllegalArgumentException("listener has been set");
}
this.listener = listener;
if (!isFinished()) {
try {
listener.onAllDataRead();
} catch (IOException e) {
listener.onError(e);
}
} else {
try {
listener.onAllDataRead();
} catch (IOException e) {
listener.onError(e);
}
}
}
@Override
public int available() throws IOException {
return body.length - lastIndexRetrieved - 1;
}
@Override
public void close() throws IOException {
lastIndexRetrieved = body.length - 1;
body = null;
}
}
}
我们在过滤器中对Request进行替换
package org.fechin.haoke.dubbo.api.interceptor;
import org.springframework.stereotype.Component;
import org.springframework.web.filter.OncePerRequestFilter;
import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
/**
* 替换Request对象
*/
@Component
public class RequestReplaceFilter extends OncePerRequestFilter {
@Override
protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) throws ServletException, IOException {
if (!(request instanceof MyServletRequestWrapper)) {
request = new MyServletRequestWrapper(request);
}
filterChain.doFilter(request, response);
}
}
通过ResponseBodyAdvice进行实现
ResponseBodyAdvice是Spring提供的高级用法,会在结果被处理前进行拦截,拦截的逻辑自己实现,这样就可以实现拿到结果数据进行写入缓存的操作了。
package org.fechin.haoke.dubbo.api.interceptor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.commons.lang3.StringUtils;
import org.fechin.haoke.dubbo.api.controller.GraphQLController;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.MethodParameter;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.http.MediaType;
import org.springframework.http.server.ServerHttpRequest;
import org.springframework.http.server.ServerHttpResponse;
import org.springframework.http.server.ServletServerHttpRequest;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.servlet.mvc.method.annotation.ResponseBodyAdvice;
import java.time.Duration;
@ControllerAdvice
public class MyResponseBodyAdvice implements ResponseBodyAdvice {
@Autowired
private RedisTemplate<String, String> redisTemplate;
private ObjectMapper mapper = new ObjectMapper();
@Override
public boolean supports(MethodParameter returnType, Class converterType) {
if (returnType.hasMethodAnnotation(GetMapping.class)) {
return true;
}
if (returnType.hasMethodAnnotation(PostMapping.class) &&
StringUtils.equals(GraphQLController.class.getName(), returnType.getExecutable().getDeclaringClass().getName())) {
return true;
}
return false;
}
@Override
public Object beforeBodyWrite(Object body, MethodParameter returnType, MediaType selectedContentType, Class selectedConverterType, ServerHttpRequest request, ServerHttpResponse response) {
try {
String redisKey = RedisCacheInterceptor.createRedisKey(((ServletServerHttpRequest) request).getServletRequest());
String redisValue;
if (body instanceof String) {
redisValue = (String) body;
} else {
redisValue = mapper.writeValueAsString(body);
}
this.redisTemplate.opsForValue().set(redisKey, redisValue, Duration.ofHours(1));
} catch (Exception e) {
e.printStackTrace();
}
return body;
}
}
经过测试,数据已经写入了缓存。
整合前端系统测试会发现,前面实现的拦截器并没有对跨域进行支持,需要对CORS跨域支持。