【Flink系列】- RocksDB增量模式checkpoint大小持续增长的问题及解决

背景


Flink版本:1.13.5

一个使用FlinkSQL开发的生产线上任务, 使用Tumble Window做聚和统计,并且配置table.exec.state.ttl为7200000,设置checkpoint周期为5分钟,使用rocksdb的增量模式。

正常情况下,任务运行一段时间以后,新增和过期的状态达到动态的平衡,随着RocksDB的compaction,checkpoint的大小会在小范围内上下起伏。

实际观察到,checkpoint大小持续缓慢增长,运行20天以后,从最初了100M左右,增长到了2G,checkpoint的时间也从1秒增加到了几十秒。

源码分析


我们看一下RocksIncrementalSnapshotStrategy.RocksDBIncrementalSnapshotOperation类中的get()方法:

public SnapshotResult get(CloseableRegistry snapshotCloseableRegistry) throws Exception {
            boolean completed = false;
            SnapshotResult metaStateHandle = null;
            Map sstFiles = new HashMap();
            HashMap miscFiles = new HashMap();
            boolean var15 = false;

            SnapshotResult var18;
            try {
                var15 = true;
                metaStateHandle = this.materializeMetaData(snapshotCloseableRegistry);
                Preconditions.checkNotNull(metaStateHandle, "Metadata was not properly created.");
                Preconditions.checkNotNull(metaStateHandle.getJobManagerOwnedSnapshot(), "Metadata for job manager was not properly created.");
                this.uploadSstFiles(sstFiles, miscFiles, snapshotCloseableRegistry);
                synchronized(RocksIncrementalSnapshotStrategy.this.materializedSstFiles) {
                    RocksIncrementalSnapshotStrategy.this.materializedSstFiles.put(this.checkpointId, sstFiles.keySet());
                }

                IncrementalRemoteKeyedStateHandle jmIncrementalKeyedStateHandle = new IncrementalRemoteKeyedStateHandle(RocksIncrementalSnapshotStrategy.this.backendUID, RocksIncrementalSnapshotStrategy.this.keyGroupRange, this.checkpointId, sstFiles, miscFiles, (StreamStateHandle)metaStateHandle.getJobManagerOwnedSnapshot());
                DirectoryStateHandle directoryStateHandle = this.localBackupDirectory.completeSnapshotAndGetHandle();
                SnapshotResult snapshotResult;
                if (directoryStateHandle != null && metaStateHandle.getTaskLocalSnapshot() != null) {
                    IncrementalLocalKeyedStateHandle localDirKeyedStateHandle = new IncrementalLocalKeyedStateHandle(RocksIncrementalSnapshotStrategy.this.backendUID, this.checkpointId, directoryStateHandle, RocksIncrementalSnapshotStrategy.this.keyGroupRange, (StreamStateHandle)metaStateHandle.getTaskLocalSnapshot(), sstFiles.keySet());
                    snapshotResult = SnapshotResult.withLocalState(jmIncrementalKeyedStateHandle, localDirKeyedStateHandle);
                } else {
                    snapshotResult = SnapshotResult.of(jmIncrementalKeyedStateHandle);
                }

                completed = true;
                var18 = snapshotResult;
                var15 = false;
            } finally {
                if (var15) {
                    if (!completed) {
                        List statesToDiscard = new ArrayList(1 + miscFiles.size() + sstFiles.size());
                        statesToDiscard.add(metaStateHandle);
                        statesToDiscard.addAll(miscFiles.values());
                        statesToDiscard.addAll(sstFiles.values());
                        this.cleanupIncompleteSnapshot(statesToDiscard);
                    }

                }
            }

重点关注uploadSstFiles()方法的实现细节:

            Preconditions.checkState(this.localBackupDirectory.exists());
            Map sstFilePaths = new HashMap();
            Map miscFilePaths = new HashMap();
            Path[] files = this.localBackupDirectory.listDirectory();
            if (files != null) {
                this.createUploadFilePaths(files, sstFiles, sstFilePaths, miscFilePaths);
                sstFiles.putAll(RocksIncrementalSnapshotStrategy.this.stateUploader.uploadFilesToCheckpointFs(sstFilePaths, this.checkpointStreamFactory, snapshotCloseableRegistry));
                miscFiles.putAll(RocksIncrementalSnapshotStrategy.this.stateUploader.uploadFilesToCheckpointFs(miscFilePaths, this.checkpointStreamFactory, snapshotCloseableRegistry));
            }

进入到createUploadFilePaths()方法:

        private void createUploadFilePaths(Path[] files, Map sstFiles, Map sstFilePaths, Map miscFilePaths) {
            Path[] var5 = files;
            int var6 = files.length;

            for(int var7 = 0; var7 < var6; ++var7) {
                Path filePath = var5[var7];
                String fileName = filePath.getFileName().toString();
                StateHandleID stateHandleID = new StateHandleID(fileName);
                if (!fileName.endsWith(".sst")) {
                    miscFilePaths.put(stateHandleID, filePath);
                } else {
                    boolean existsAlready = this.baseSstFiles != null && this.baseSstFiles.contains(stateHandleID);
                    if (existsAlready) {
                        sstFiles.put(stateHandleID, new PlaceholderStreamStateHandle());
                    } else {
                        sstFilePaths.put(stateHandleID, filePath);
                    }
                }
            }

        }

  这里是问题的关键,我们可以归纳出主要逻辑:

1. 扫描rocksdb本地存储目录下的所有文件,获取到所有的sst文件和misc文件(除sst文件外的其他所有文件);

2. 将sst文件和历史checkpoint上传的sst文件做对比,将新增的sst文件路径记录下来;

3. 将misc文件的路径记录下来;

这里就是增量checkpoint的关键逻辑了, 我们发现一点,增量的checkpoint只针对sst文件, 对其他的misc文件是每次全量备份的,我们进到一个目录节点看一下有哪些文件被全量备份了:

[hadoop@fsp-hadoop-1 db]$ ll
总用量 8444
-rw-r--r-- 1 hadoop hadoop       0 3月  28 14:56 000058.log
-rw-r--r-- 1 hadoop hadoop 2065278 3月  31 10:17 025787.sst
-rw-r--r-- 1 hadoop hadoop 1945453 3月  31 10:18 025789.sst
-rw-r--r-- 1 hadoop hadoop   75420 3月  31 10:18 025790.sst
-rw-r--r-- 1 hadoop hadoop   33545 3月  31 10:18 025791.sst
-rw-r--r-- 1 hadoop hadoop   40177 3月  31 10:18 025792.sst
-rw-r--r-- 1 hadoop hadoop   33661 3月  31 10:18 025793.sst
-rw-r--r-- 1 hadoop hadoop   40494 3月  31 10:19 025794.sst
-rw-r--r-- 1 hadoop hadoop   33846 3月  31 10:19 025795.sst
-rw-r--r-- 1 hadoop hadoop      16 3月  30 19:46 CURRENT
-rw-r--r-- 1 hadoop hadoop      37 3月  28 14:56 IDENTITY
-rw-r--r-- 1 hadoop hadoop       0 3月  28 14:56 LOCK
-rw-rw-r-- 1 hadoop hadoop   38967 3月  28 14:56 LOG
-rw-r--r-- 1 hadoop hadoop 1399964 3月  31 10:19 MANIFEST-022789
-rw-r--r-- 1 hadoop hadoop   10407 3月  28 14:56 OPTIONS-000010
-rw-r--r-- 1 hadoop hadoop   13126 3月  28 14:56 OPTIONS-000012

1. CURRENT、IDENTIFY、LOCK、OPTIONS-*, 这些文件基本是固定大小,不会有变化;

2. LOG文件, 这个文件是rocksdb的日志文件,默认情况下,flink设置的rocksdb的日志输出级别是HEAD级别,几乎不会有日志输出,但是如果你配置了state.backend.rocksdb.log.level,比如说配置为了INFO_LEVEL,那么这个LOG文件会持续输出并且不会被清理;

3. MANIFEST-*,这是rocksdb的事务日志,在任务恢复重放过程中会用到, 这个日志也会持续增长,达到阈值以后滚动生成新的并且清楚旧文件;

原因总结


在增量checkpoint过程中,虽然sst文件所保存的状态数据大小保持动态平衡,但是LOG日志和MANIFEST文件仍然会当向持续增长,所以checkpoint会越来越大,越来越慢。

解决办法


1. 在生产环境关闭Rocksdb日志(保持state.backend.rocksdb.log.level的默认配置即可);

2. 设置manifest文件的滚动阈值,我设置的是10485760byte;

问题解决。

你可能感兴趣的:(Flink,流计算,hadoop,flink)