通过设计使程序模块化,做到模块内部的高聚合和模块之间的低耦合。这样做的好处是使得程序在开发的过程中,开发人员只需要专注于一点,提高程序开发的效率,并且更容易进行后续的测试以及定位问题。但设计不能违背目的,对于不同量级的工程,具体架构的实现方式必然是不同的,切忌犯为了设计而设计,为了架构而架构的毛病。
举个简单的例子:
一个Android App如果只有3个Java文件,那只需要做点模块和层次的划分就可以,引入框架或者架构反而提高了工作量,降低了生产力;
但如果当前开发的App最终代码量在10W行以上,本地需要进行复杂操作,同时也需要考虑到与其余的Android开发者以及后台开发人员之间的同步配合,那就需要在架构上进行一些思考!
MVC全名是Model View Controller,如图,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑、数据、界面显示分离的方法组织代码,在改进和个性化定制界面及用户交互的同时,不需要重新编写业务逻辑。
其中M层处理数据,业务逻辑等;V层处理界面的显示结果;C层起到桥梁的作用,来控制V层和M层通信以此来达到分离视图显示和业务逻辑层。
Android中界面部分也采用了当前比较流行的MVC框架,在Android中:
一般采用XML文件进行界面的描述,这些XML可以理解为AndroidApp的View。使用的时候可以非常方便的引入。同时便于后期界面的修改。逻辑中与界面对应的id不变化则代码不用修改,大大增强了代码的可维护性。
Android的控制层的重任通常落在了众多的Activity的肩上。这句话也就暗含了不要在Activity中写代码,要通过Activity交割Model业务逻辑层处理,这样做的另外一个原因是Android中的Actiivity的响应时间是5s,如果耗时的操作放在这里,程序就很容易被回收掉。
我们针对业务模型,建立的数据结构和相关的类,就可以理解为AndroidApp的Model,Model是与View无关,而与业务相关的(感谢@Xander的讲解)。对数据库的操作、对网络等的操作都应该在Model里面处理,当然对业务计算等操作也是必须放在的该层的。就是应用程序中二进制的数据。
在App开发过程中,经常出现的问题就是某一部分的代码量过大,虽然做了模块划分和接口隔离,但也很难完全避免。从实践中看到,这更多的出现在UI部分,也就是Activity里。想象一下,一个2000+行以上基本不带注释的Activity,我的第一反应就是想吐。Activity内容过多的原因其实很好解释,因为Activity本身需要担负与用户之间的操作交互,界面的展示,不是单纯的Controller或View。而且现在大部分的Activity还对整个App起到类似IOS中的【ViewController】的作用,这又带入了大量的逻辑代码,造成Activity的臃肿。为了解决这个问题,让我们引入MVP框架。
View、Controller、Model 相互依赖,造成代码耦合。
难以分工,难以将 View、Controller、Model 分给不同的人写。
难以维护,没有中间件接口做缓冲,难以替换底层的实现。
MVP从更早的MVC框架演变过来,与MVC有一定的相似性:Controller/Presenter负责逻辑的处理,Model提供数据,View负责显示。
MVP框架由3部分组成:View负责显示,Presenter负责逻辑处理,Model提供数据。在MVP模式里通常包含3个要素(加上View interface是4个):
Tips:*View interface的必要性
回想一下你在开发Android应用时是如何对代码逻辑进行单元测试的?是否每次都要将应用部署到Android模拟器或真机上,然后通过模拟用 户操作进行测试?然而由于Android平台的特性,每次部署都耗费了大量的时间,这直接导致开发效率的降低。而在MVP模式中,处理复杂逻辑的Presenter是通过interface与View(Activity)进行交互的,这说明我们可以通过自定义类实现这个interface来模拟Activity的行为对Presenter进行单元测试,省去了大量的部署及测试的时间。
当我们将Activity复杂的逻辑处理移至另外的一个类(Presenter)中时,Activity其实就是MVP模式中的View,它负责UI元素的初始化,建立UI元素与Presenter的关联(Listener之类),同时自己也会处理一些简单的逻辑(复杂的逻辑交由 Presenter处理)。
MVP的Presenter是框架的控制者,承担了大量的逻辑操作,而MVC的Controller更多时候承担一种转发的作用。因此在App中引入MVP的原因,是为了将此前在Activty中包含的大量逻辑操作放到控制层中,避免Activity的臃肿。
两种模式的主要区别:
(最主要区别)View与Model并不直接交互,而是通过与Presenter交互来与Model间接交互。而在MVC中View可以与Model直接交互
通常View与Presenter是一对一的,但复杂的View可能绑定多个Presenter来处理逻辑。而Controller是基于行为的,并且可以被多个View共享,Controller可以负责决定显示哪个View
Presenter与View的交互是通过接口来进行的,更有利于添加单元测试。
因此我们可以发现MVP的优点如下:
1、模型与视图完全分离,我们可以修改视图而不影响模型;
2、可以更高效地使用模型,因为所有的交互都发生在一个地方——Presenter内部;
3、我们可以将一个Presenter用于多个视图,而不需要改变Presenter的逻辑。这个特性非常的有用,因为视图的变化总是比模型的变化频繁;
4、如果我们把逻辑放在Presenter中,那么我们就可以脱离用户接口来测试这些逻辑(单元测试)。
具体到Android App中,一般可以将App根据程序的结构进行纵向划分,根据MVP可以将App分别为模型层(M),UI层(V)和逻辑层§。
UI层一般包括Activity,Fragment,Adapter等直接和UI相关的类,UI层的Activity在启动之后实例化相应的Presenter,App的控制权后移,由UI转移到Presenter,两者之间的通信通过BroadCast、Handler或者接口完成,只传递事件和结果。
举个简单的例子,UI层通知逻辑层(Presenter)用户点击了一个Button,逻辑层(Presenter)自己决定应该用什么行为进行响应,该找哪个模型(Model)去做这件事,最后逻辑层(Presenter)将完成的结果更新到UI层。
转移逻辑操作之后可能部分较为复杂的Activity内代码量还是不少,于是需要在分层的基础上再加入模板方法(Template Method)。
具体做法是在Activity内部分层。其中最顶层为BaseActivity,不做具体显示,而是提供一些基础样式,Dialog,ActionBar在内的内容,展现给用户的Activity继承BaseActivity,重写BaseActivity预留的方法。如有必要再进行二次继承,App中Activity之间的继承次数最多不超过3次。
模型层(Model)中的整体代码量是最大的,一般由大量的Package组成,针对这部分需要做的就是在程序设计的过程中,做好模块的划分,进行接口隔离,在内部进行分层。
强化Presenter的作用,将所有逻辑操作都放在Presenter内也容易造成Presenter内的代码量过大,对于这点,有一个方法是在UI层和Presenter之间设置中介者Mediator,将例如数据校验、组装在内的轻量级逻辑操作放在Mediator中;在Presenter和Model之间使用代理Proxy;通过上述两者分担一部分Presenter的逻辑操作,但整体框架的控制权还是在Presenter手中。Mediator和Proxy不是必须的,只在Presenter负担过大时才建议使用。
最终的架构如下图所示:
我们来看看MVP在Android开发中是怎么应用的吧!!
我们用另一个例子来解释。
这里核心的代码是MVP部分。
这里我们首先定义了MVP模式中的最顶层的View和Presenter,在这里分别是BaseView和BasePresenter,它们在该项目中是两个空的接口,在一些项目中,我们可以根据自己的需求在这两个接口中添加自己需要的方法。
然后,我们定义了HomeContract。它是一个抽象的接口,相当于一层协议,用来规定指定的功能的View和Presenter分别应该具有哪些方法。通常,对于不同的功能,我们需要分别实现一个MVP,每个MVP都会又一个对应的Contract。笔者认为它的好处在于,将指定的View和Presenter的接口定义在一个接口中,更加集中。它们各自需要实现的方法也一目了然地展现在了我们面前。
public interface HomeContract {
interface IView extends BaseView {
void setFirstPage(List<HomeBean.IssueList.ItemList> itemLists);
void setNextPage(List<HomeBean.IssueList.ItemList> itemLists);
void onError(String msg);
}
interface IPresenter extends BasePresenter {
void requestFirstPage();
void requestNextPage();
}
}
HomeContract用来规定View和Presenter应该具有的操作,在这里它用来指定主页的View和Presenter的方法。从上面我们也可以看出,这里的IView和IPresenter分别实现了BaseView和BasePresenter。
上面,我们定义了V和P的规范,MVP中还有一项Model,它用来从网络中获取数据。这里我们省去网络相关的具体的代码,你只需要知道APIRetrofit.getEyepetizerService()是用来获取Retrofit对应的Service,而getMoreHomeData()和getFirstHomeData()是用来从指定的接口中获取数据就行。下面是HomeModel的定义:
public class HomeModel {
public Observable<HomeBean> getFirstHomeData() {
return APIRetrofit.getEyepetizerService().getFirstHomeData(System.currentTimeMillis());
}
public Observable<HomeBean> getMoreHomeData(String url) {
return APIRetrofit.getEyepetizerService().getMoreHomeData(url);
}
}
OK,上面我们已经完成了Model的定义和View及Presenter的规范的定义。下面,我们就需要具体去实现View和Presenter。
首先是Presenter,下面是我们的HomePresenter的定义。在下面的代码中,为了更加清晰地展示其中的逻辑,我删减了一部分无关代码:
public class HomePresenter implements HomeContract.IPresenter {
private HomeContract.IView view;
private HomeModel homeModel;
private String nextPageUrl;
// 传入View并实例化Model
public HomePresenter(HomeContract.IView view) {
this.view = view;
homeModel = new HomeModel();
}
// 使用Model请求数据,并在得到请求结果的时候调用View的方法进行回调
@Override
public void requestFirstPage() {
Disposable disposable = homeModel.getFirstHomeData()
// ....
.subscribe(itemLists -> { view.setFirstPage(itemLists); },
throwable -> { view.onError(throwable.toString()); });
}
// 使用Model请求数据,并在得到请求结果的时候调用View的方法进行回调
@Override
public void requestNextPage() {
Disposable disposable = homeModel.getMoreHomeData(nextPageUrl)
// ....
.subscribe(itemLists -> { view.setFirstPage(itemLists); },
throwable -> { view.onError(throwable.toString()); });
}
}
从上面我们可以看出,在Presenter需要将View和Model建立联系。我们需要在初始化的时候传入View,并实例化一个Model。Presenter通过Model获取数据,并在拿到数据的时候,通过View的方法通知给View层。
然后,就是我们的View层的代码,同样,我对代码做了删减:
@Route(path = BaseConstants.EYEPETIZER_MENU)
public class HomeActivity extends CommonActivity<ActivityEyepetizerMenuBinding> implements HomeContract.IView {
// 实例化Presenter
private HomeContract.IPresenter presenter;
{
presenter = new HomePresenter(this);
}
@Override
protected int getLayoutResId() {
return R.layout.activity_eyepetizer_menu;
}
@Override
protected void doCreateView(Bundle savedInstanceState) {
// ...
// 使用Presenter请求数据
presenter.requestFirstPage();
loading = true;
}
private void configList() {
// ...
getBinding().rv.addOnScrollListener(new RecyclerView.OnScrollListener() {
@Override
public void onScrolled(RecyclerView recyclerView, int dx, int dy) {
// 请求下一页的数据
presenter.requestNextPage();
}
}
});
}
// 当请求到结果的时候在页面上做处理,展示到页面上
@Override
public void setFirstPage(List<HomeBean.IssueList.ItemList> itemLists) {
loading = false;
homeAdapter.addData(itemLists);
}
// 当请求到结果的时候在页面上做处理,展示到页面上
@Override
public void setNextPage(List<HomeBean.IssueList.ItemList> itemLists) {
loading = false;
homeAdapter.addData(itemLists);
}
@Override
public void onError(String msg) {
ToastUtils.makeToast(msg);
}
// ...
}
从上面的代码中我们可以看出实际在View中也要维护一个Presenter的实例。
当需要请求数据的时候会使用该实例的方法来请求数据,所以,在开发的时候,我们需要根据请求数据的情况,在Presenter中定义接口方法。
实际上,MVP的原理就是View通过Presenter获取数据,获取到数据之后再回调View的方法来展示数据。
可以证实MVP模式的一些优点:
在MVP中,Activity的代码不臃肿;
在MVP中,Model(IUserModel的实现类)的改动不会影响Activity(View),两者也互不干涉,而在MVC中会;
在MVP中,IUserView这个接口可以实现方便地对Presenter的测试;
在MVP中,UserPresenter可以用于多个视图,但是在MVC中的Activity就不行。
MVVM可以算是MVP的升级版,其中的VM是ViewModel的缩写,ViewModel可以理解成是View的数据模型和Presenter的合体,ViewModel和View之间的交互通过Data Binding完成,而Data Binding可以实现双向的交互,这就使得视图和控制层之间的耦合程度进一步降低,关注点分离更为彻底,同时减轻了Activity的压力。
模型层 (Model):负责从各种数据源中获取数据;
视图层 (View):在 Android 中对应于 Activity 和 Fragment,用于展示给用户和处理用户交互,会驱动 ViewModel 从 Model 中获取数据;
ViewModel 层:用于将 Model 和 View 进行关联,我们可以在 View 中通过 ViewModel 从 Model 中获取数据;当获取到了数据之后,会通过自动绑定,比如 DataBinding,来将结果自动刷新到界面上。
这里的model.data下面的类是对应于网络的数据实体的,由JSON自动生成,这里我们不进行详细描述。这里的model.repository下面的两个类是用来从网络中获取数据信息的,我们也忽略它的定义。
上面就是我们的 Model 的定义,并没有太多的内容,基本与 MVP 一致。
下面的是 ViewModel 的代码,我们选择了其中的一个方法来进行说明。当我们定义 ViewModel 的时候,需要继承 ViewModel 类。
public class GuokrViewModel extends ViewModel {
public LiveData<Resource<GuokrNews>> getGuokrNews(int offset, int limit) {
MutableLiveData<Resource<GuokrNews>> result = new MutableLiveData<>();
GuokrRetrofit.getGuokrService().getNews(offset, limit)
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<GuokrNews>() {
@Override
public void onError(Throwable e) {
result.setValue(Resource.error(e.getMessage(), null));
}
@Override
public void onComplete() { }
@Override
public void onSubscribe(Disposable d) { }
@Override
public void onNext(GuokrNews guokrNews) {
result.setValue(Resource.success(guokrNews));
}
});
return result;
}
}
这里的 ViewModel 来自 android.arch.lifecycle.ViewModel,所以,为了使用它,我们还需要加入下面的依赖:
api "android.arch.lifecycle:runtime:$archVersion"
api "android.arch.lifecycle:extensions:$archVersion"
annotationProcessor "android.arch.lifecycle:compiler:$archVersion"
在 ViewModel 的定义中,我们直接使用 Retrofit 来从网络中获取数据。然后当获取到数据的时候,我们使用 LiveData 的方法把数据封装成一个对象返回给 View 层。在 View 层,我们只需要调用该方法,并对返回的 LiveData 进行"监听"即可。这里,我们将错误信息和返回的数据信息进行了封装,并且封装了一个代表当前状态的枚举信息,你可以参考源代码来详细了解下这些内容。
上面我们定义完了 Model 和 ViewModel,下面我们看下 View 层的定义,以及在 View 层中该如何使用 ViewModel。
@Route(path = BaseConstants.GUOKR_NEWS_LIST)
public class NewsListFragment extends CommonFragment<FragmentNewsListBinding> {
private GuokrViewModel guokrViewModel;
private int offset = 0;
private final int limit = 20;
private GuokrNewsAdapter adapter;
@Override
protected int getLayoutResId() {
return R.layout.fragment_news_list;
}
@Override
protected void doCreateView(Bundle savedInstanceState) {
// ...
guokrViewModel = ViewModelProviders.of(this).get(GuokrViewModel.class);
fetchNews();
}
private void fetchNews() {
guokrViewModel.getGuokrNews(offset, limit).observe(this, guokrNewsResource -> {
if (guokrNewsResource == null) {
return;
}
switch (guokrNewsResource.status) {
case FAILED:
ToastUtils.makeToast(guokrNewsResource.message);
break;
case SUCCESS:
adapter.addData(guokrNewsResource.data.getResult());
adapter.notifyDataSetChanged();
break;
}
});
}
}
以上就是我们的 View 层的定义,这里我们先使用了
这里的view.fragment包下面的类对应于实际的页面,这里我们 ViewModelProviders 的方法来获取我们需要使用的 ViewModel,然后,我们直接使用该 ViewModel 的方法获取数据,并对返回的结果进行“监听”即可。
MVVM模式和MVC模式一样,主要目的是分离视图(View)和模型(Model),有几大优点:
低耦合:视图(View)可以独立于Model变化和修改,一个 ViewModel 可以绑定到不同的 View 上,当 View 变化的时候 Model 可以不变,当 Model 变化的时候 View 也可以不变。
可重用性:你可以把一些视图逻辑放在一个 ViewModel 里面,让很多 view 重用这段视图逻辑。
独立开发:开发人员可以专注于业务逻辑和数据的开发(ViewModel),设计人员可以专注于页面设计。
可测试:界面素来是比较难于测试的,而现在测试可以针对 ViewModel 来写。
在比较之前,先从图上看看三者的异同。
刚开始理解这些概念的时候认为这几种模式虽然都是要将view和model解耦,但是非此即彼,没有关系,一个应用只会用一种模式。后来慢慢发现世界绝对不是只有黑白两面,中间最大的一块其实是灰色地带,同样,这几种模式的边界并非那么明显,可能你在自己的应用中都会用到。实际上也根本没必要去纠结自己到底用的是MVC、MVP还是MVVP,不管黑猫白猫,捉住老鼠就是好猫。
MVC -> MVP -> MVVM 这几个软件设计模式是一步步演化发展的,MVVM 是从 MVP 的进一步发展与规范,MVP 隔离了MVC中的 M 与 V 的直接联系后,靠 Presenter 来中转,所以使用 MVP 时 P 是直接调用 View 的接口来实现对视图的操作的,这个 View 接口的东西一般来说是 showData、showLoading等等。M 与 V已经隔离了,方便测试了,但代码还不够优雅简洁,所以 MVVM 就弥补了这些缺陷。在 MVVM 中就出现的 Data Binding 这个概念,意思就是 View 接口的 showData 这些实现方法可以不写了,通过 Binding 来实现。
如果把这三者放在一起比较,先说一下三者的共同点,也就是Model和View:
Model:数据对象,同时,提供本应用外部对应用程序数据的操作的接口,也可能在数据变化时发出变更通知。Model不依赖于View的实现,只要外部程序调用Model的接口就能够实现对数据的增删改查。
View:UI层,提供对最终用户的交互操作功能,包括UI展现代码及一些相关的界面逻辑代码。
三者的差异在于如何粘合View和Model,实现用户的交互操作以及变更通知
Controller接收View的操作事件,根据事件不同,或者调用Model的接口进行数据操作,或者进行View的跳转,从而也意味着一个Controller可以对应多个View。Controller对View的实现不太关心,只会被动地接收,Model的数据变更不通过Controller直接通知View,通常View采用观察者模式监听Model的变化。
Presenter与Controller一样,接收View的命令,对Model进行操作;与Controller不同的是Presenter会反作用于View,Model的变更通知首先被Presenter获得,然后Presenter再去更新View。一个Presenter只对应于一个View。根据Presenter和View对逻辑代码分担的程度不同,这种模式又有两种情况:Passive View和Supervisor Controller。
注意这里的“Model”指的是View的Model,跟MVVM中的一个Model不是一回事。所谓View的Model就是包含View的一些数据属性和操作的这么一个东东,这种模式的关键技术就是数据绑定(data binding),View的变化会直接影响ViewModel,ViewModel的变化或者内容也会直接体现在View上。这种模式实际上是框架替应用开发者做了一些工作,开发者只需要较少的代码就能实现比较复杂的交互。
MVP和MVVM完全隔离了Model和View,但是在有些情况下,数据从Model到ViewModel或者Presenter的拷贝开销很大,可能也会结合MVC的方式,Model直接通知View进行变更。在实际的应用中很有可能你已经在不知不觉中将几种模式融合在一起,但是为了代码的可扩展、可测试性,必须做到模块的解耦,不相关的代码不要放在一起。
如果非要说怎么选的话,以我浅薄的知识建议如下:
如果项目简单,没什么复杂性,未来改动也不大的话,那就不要用设计模式或者架构方法,只需要将每个模块封装好,方便调用即可,不要为了使用设计模式或架构方法而使用。
对于偏向展示型的app,绝大多数业务逻辑都在后端,app主要功能就是展示数据,交互等,建议使用mvvm。
对于工具类或者需要写很多业务逻辑app,使用mvp或者mvvm都可。
如果想通过一个项目去学习架构和设计模式,建议用MVC然后在此基础上慢慢挖掘改进。最后你可能发现,改进的最终结果可能就变成了mvp,mvvm。