R-Seurat单细胞数据分析流程

  • Seurat standard pipeline
    • 创建Seurat对象
    • 质控
    • Normalization
    • 特征选择
    • 数据缩放
    • 线性降维
    • 维数选择
    • 细胞聚类
    • 非线性降维(UMAP/tSNE)
    • 鉴定差异表达特征(cluster markers)
    • 细胞注释

Seurat standard pipeline

记录一下Seurat标准的单细胞分析流程,这里使用官方提供的pbmc3k作为示例

pbmc3k: https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

Seurat单细胞分析流程主要就是以下十句代码

pbmc.counts <- Read10X(data.dir = "data/filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc.counts)
pbmc <- NormalizeData(object = pbmc)
pbmc <- FindVariableFeatures(object = pbmc)
pbmc <- ScaleData(object = pbmc)
pbmc <- RunPCA(object = pbmc)
pbmc <- FindNeighbors(object = pbmc)
pbmc <- FindClusters(object = pbmc)
pbmc <- RunTSNE(object = pbmc)
DimPlot(object = pbmc, reduction = "tsne")

以下详细展开某一步的功能

library(dplyr)
library(Seurat)
library(patchwork)

创建Seurat对象

Seurat接受counts文件作为输入(一般经过cellranger处理),创建包含细胞信息和counts信息的对象。

# Load the PBMC dataset
pbmc.data <- Read10X(data.dir = "data/filtered_gene_bc_matrices/hg19/")
# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
pbmc
## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)

Seurat对象中的counts以稀疏矩阵的方式存储以节省内存,. 表示没有检测到counts

# Lets examine a few genes in the first thirty cells
pbmc.data[c("CD3D", "TCL1A", "MS4A1"), 1:10]
## 3 x 10 sparse Matrix of class "dgCMatrix"

##    [[ suppressing 10 column names 'AAACATACAACCAC-1', 'AAACATTGAGCTAC-1', 'AAACATTGATCAGC-1' ... ]]

##                           
## CD3D  4 . 10 . . 1 2 3 1 .
## TCL1A . .  . . . . . . 1 .
## MS4A1 . 6  . . . . . . 1 1

质控

一般而言,我们需要对数据进行质控以保证数据的质量,在进行后续的分析。常用的质控指标包括:

  • 每个细胞的唯一基因数目

    • 低质量或空液泡往往只能检测到少量基因

    • 双液泡(doublet)或多液泡(multiplets)会具有异常多的基因数目

  • 每个细胞的总counts数(相当于每个细胞的测序深度)

  • 线粒体基因占比

    • 低质量或死细胞会具有异常高的线粒体基因表达

由于每个细胞的基因数和测序深度在cellranger分析的时候已经计算过了,这里我们只需要再计算线粒体基因表达的比例即可

# The [[ operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")

Seurat将细胞相关的元数据存储在 [email protected]

# Show QC metrics for the first 5 cells
head([email protected], 5)
##                  orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACATACAACCAC-1     pbmc3k       2419          779  3.0177759
## AAACATTGAGCTAC-1     pbmc3k       4903         1352  3.7935958
## AAACATTGATCAGC-1     pbmc3k       3147         1129  0.8897363
## AAACCGTGCTTCCG-1     pbmc3k       2639          960  1.7430845
## AAACCGTGTATGCG-1     pbmc3k        980          521  1.2244898
# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

随后,我们过滤掉基因数(nFeature_RNA)大于2500或小于200的细胞,以及线粒体基因组比例大于5%的细胞

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

需要注意的是这里的过滤标准在适合在这个数据集中使用,未必适用于其他的数据集。更好的质控方法是根据质控指标的分位数进行过滤,例如过滤掉 nFeature_RNA 上四分位数和下四分位数的细胞。

另外,这里只使用了三种指标对细胞进行质控,在实际分析中我们还可以使用其他工具进行更精密的质控,例如:

  • SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data (https://github.com/constantAmateur/SoupX)
  • DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors (https://github.com/chris-mcginnis-ucsf/DoubletFinder)
  • DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data (https://github.com/powellgenomicslab/DropletQC)

Normalization

在质控后,我们进行counts的normalization,默认使用 "LogNormalize" 的方法,即将每个基因的counts除以细胞总的counts数,乘上10,000,再进行对数转换。

pbmc <- NormalizeData(pbmc)

Seurat提供了另外的normalization方法,通过 normalization.method 指定, 包括:

  • "CLR": centered log ratio transformation

  • "RC": equals to "LogNormalize" without log-transformation

校正后的数据在 pbmc[["RNA"]]@data

pbmc[["RNA"]]@data[c("CD3D", "TCL1A", "MS4A1"), 1:10]
## 3 x 10 sparse Matrix of class "dgCMatrix"

##    [[ suppressing 10 column names 'AAACATACAACCAC-1', 'AAACATTGAGCTAC-1', 'AAACATTGATCAGC-1' ... ]]

##                                                                         
## CD3D  2.864242 .        3.489706 . . 1.726902 2.321937 2.658463 2.179642
## TCL1A .        .        .        . . .        .        .        2.179642
## MS4A1 .        2.583047 .        . . .        .        .        2.179642
##               
## CD3D  .       
## TCL1A .       
## MS4A1 2.309182

特征选择

Seurat选择在细胞细胞之间具有高度变异性的基因(例如某些细胞高表达,而其他细胞不表达)进行后续分析,这是由于这些基因可以代表细胞与细胞间的主要生物学差异

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(pbmc), 10)

# plot variable features with and without labels
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
## When using repel, set xnudge and ynudge to 0 for optimal results
plot1 + plot2
## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous x-axis

默认选择前2000个高度变异基因。

数据缩放

Normalization后,需要对数据进行缩放(scaling)。 Scaling后,数据的均值为0,方差为1。

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
## Centering and scaling data matrix

scaled data存放在 pbmc[["RNA"]]@scale.data

pbmc[["RNA"]]@scale.data[c("CD3D", "TCL1A", "MS4A1"), 1:10]
##       AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1
## CD3D         1.2509633       -0.9797929        1.7380926       -0.9797929
## TCL1A       -0.3187677       -0.3187677       -0.3187677       -0.3187677
## MS4A1       -0.4110536        2.5965712       -0.4110536       -0.4110536
##       AAACCGTGTATGCG-1 AAACGCACTGGTAC-1 AAACGCTGACCAGT-1 AAACGCTGGTTCTT-1
## CD3D        -0.9797929        0.3651696        0.8286000        1.0906967
## TCL1A       -0.3187677       -0.3187677       -0.3187677       -0.3187677
## MS4A1       -0.4110536       -0.4110536       -0.4110536       -0.4110536
##       AAACGCTGTAGCCA-1 AAACGCTGTTTCTG-1
## CD3D         0.7177763       -0.9797929
## TCL1A        2.3330706       -0.3187677
## MS4A1        2.1268583        2.2776908

线性降维

Seurat 使用PCA进行降维,这里只对 FindVariableFeatures 挑选出的高变基因进行PCA分析

pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
##     FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP 
##     PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW 
##     CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A 
##     MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
##     HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
##     BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 
##     CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
##     TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
##     HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
##     PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
##     HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
##     NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A 
##     SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC 
##     GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL 
##     AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 
##     LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 
##     GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 
##     RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 
##     PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B 
##     FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB
DimPlot(pbmc, reduction = "pca")
DimHeatmap(pbmc, dims = 1:5, cells = 500, balanced = TRUE)

维数选择

Seurat在主成分PC上进行聚类。然而直接对所有PC聚类是不现实的,我们需要选择足够的PC以代表数据的主要变异度,同时控制计算资源的开销。

因此,Seurat结合JackStraw程序和置换检验对PC进行显著性分析,鉴定出显著的PC以进行后续分析。

# NOTE: This process can take a long time for big datasets, comment out for expediency. More
# approximate techniques such as those implemented in ElbowPlot() can be used to reduce
# computation time
pbmc <- JackStraw(pbmc, num.replicate = 100)
pbmc <- ScoreJackStraw(pbmc, dims = 1:20)

PC11之后,PC的p-value就发生了迅速的上升,而变得不显著。

JackStrawPlot(pbmc, dims = 1:15)
## Warning: Removed 23496 rows containing missing values (geom_point).

我们还可以结合elbow plot进行判断,选择拐点和曲线平滑的PC

ElbowPlot(pbmc)

综上,我们选取前10个维度进行后续分析

细胞聚类

Seurat使用基于图的聚类算法对细胞进行聚类

FindNeighbors 中的 dims 参数指定聚类使用的维度

FindClusters 中的 resolution 参数指定类别的精度,越大则分出越多的类;越小则类别越少

pbmc <- FindNeighbors(pbmc, dims = 1:10)
## Computing nearest neighbor graph

## Computing SNN
pbmc <- FindClusters(pbmc, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2638
## Number of edges: 95965
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8723
## Number of communities: 9
## Elapsed time: 0 seconds
table(Idents(pbmc))
## 
##   0   1   2   3   4   5   6   7   8 
## 711 480 472 344 279 162 144  32  14

非线性降维(UMAP/tSNE)

非线性降维捕捉数据内部的流式(manifold)以将细胞投射到低维空间中。

# If you haven't installed UMAP, you can do so via reticulate::py_install(packages =
# 'umap-learn')
pbmc <- RunUMAP(pbmc, dims = 1:10)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session

## 17:08:35 UMAP embedding parameters a = 0.9922 b = 1.112

## 17:08:35 Read 2638 rows and found 10 numeric columns

## 17:08:35 Using Annoy for neighbor search, n_neighbors = 30

## 17:08:35 Building Annoy index with metric = cosine, n_trees = 50

## 0%   10   20   30   40   50   60   70   80   90   100%

## [----|----|----|----|----|----|----|----|----|----|

## **************************************************|
## 17:08:35 Writing NN index file to temp file C:\Users\lda\AppData\Local\Temp\RtmpMlm7gA\file678867c8bcc
## 17:08:35 Searching Annoy index using 1 thread, search_k = 3000
## 17:08:36 Annoy recall = 100%
## 17:08:36 Commencing smooth kNN distance calibration using 1 thread
## 17:08:37 Initializing from normalized Laplacian + noise
## 17:08:37 Commencing optimization for 500 epochs, with 105124 positive edges
## 17:08:43 Optimization finished
pbmc <- RunTSNE(pbmc, dims = 1:10)
# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
DimPlot(pbmc, reduction = "umap", label = TRUE)
DimPlot(pbmc, reduction = "tsne", label = TRUE)

UMAP和tSNE的降维效果不同,需要根据实际情况选择。

在这里可以保存中间数据,作为一个checkpoint

saveRDS(pbmc, file = "data/pbmc_tutorial.rds")

鉴定差异表达特征(cluster markers)

Seurat支持对cluster之间进行差异表达分析,主要有 FindMarkersFindAllMarkers 两种方法。

这里鉴定cluster 5和cluster 0, 3之间的差异基因。如果不指定 ident.2 则鉴定cluster 5 与其余clusters的差异基因。

min.pct 指定差异基因需要在cluster中的表达占比

# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)
head(cluster5.markers, n = 5)
##                       p_val avg_log2FC pct.1 pct.2     p_val_adj
## FCGR3A        2.150929e-209   4.267579 0.975 0.039 2.949784e-205
## IFITM3        6.103366e-199   3.877105 0.975 0.048 8.370156e-195
## CFD           8.891428e-198   3.411039 0.938 0.037 1.219370e-193
## CD68          2.374425e-194   3.014535 0.926 0.035 3.256286e-190
## RP11-290F20.3 9.308287e-191   2.722684 0.840 0.016 1.276538e-186

FindAllMarkers 可以一次寻找所有clusters的markers,但只返回上调的markers

# find markers for every cluster compared to all remaining cells, report only the positive
# ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
## Calculating cluster 0

## Calculating cluster 1

## Calculating cluster 2

## Calculating cluster 3

## Calculating cluster 4

## Calculating cluster 5

## Calculating cluster 6

## Calculating cluster 7

## Calculating cluster 8
pbmc.markers %>%
    group_by(cluster) %>%
    slice_max(n = 2, order_by = avg_log2FC)
## Registered S3 method overwritten by 'cli':
##   method     from         
##   print.boxx spatstat.geom

## # A tibble: 18 x 7
## # Groups:   cluster [9]
##        p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene    
##                            
##  1 1.17e- 83       1.33 0.435 0.108 1.60e- 79 0       CCR7    
##  2 1.74e-109       1.07 0.897 0.593 2.39e-105 0       LDHB    
##  3 0.              5.57 0.996 0.215 0.        1       S100A9  
##  4 0.              5.48 0.975 0.121 0.        1       S100A8  
##  5 7.99e- 87       1.28 0.981 0.644 1.10e- 82 2       LTB     
##  6 2.61e- 59       1.24 0.424 0.111 3.58e- 55 2       AQP3    
##  7 0.              4.31 0.936 0.041 0.        3       CD79A   
##  8 9.48e-271       3.59 0.622 0.022 1.30e-266 3       TCL1A   
##  9 4.93e-169       3.01 0.595 0.056 6.76e-165 4       GZMK    
## 10 1.17e-178       2.97 0.957 0.241 1.60e-174 4       CCL5    
## 11 3.51e-184       3.31 0.975 0.134 4.82e-180 5       FCGR3A  
## 12 2.03e-125       3.09 1     0.315 2.78e-121 5       LST1    
## 13 6.82e-175       4.92 0.958 0.135 9.36e-171 6       GNLY    
## 14 1.05e-265       4.89 0.986 0.071 1.44e-261 6       GZMB    
## 15 1.48e-220       3.87 0.812 0.011 2.03e-216 7       FCER1A  
## 16 1.67e- 21       2.87 1     0.513 2.28e- 17 7       HLA-DPB1
## 17 3.68e-110       8.58 1     0.024 5.05e-106 8       PPBP    
## 18 7.73e-200       7.24 1     0.01  1.06e-195 8       PF4

Visualization

Seurat提供多种基因表达量可视化方法

  • 小提琴图
VlnPlot(pbmc, features = c("MS4A1", "CD79A"))
  • 细胞降维图
FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP",
    "CD8A"))
  • 热图
pbmc.markers %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log2FC) -> top10
DoHeatmap(pbmc, features = top10$gene) + NoLegend()

细胞注释

我们可以根据细胞marker基因的表达对细胞进行注释。虽然目前有一些自动注释的工具,但总的来说大家还是根据细胞的经典markers对细胞进行注释。

这里,我们根据教程中提供的cluster markers和细胞类型进行注释

Cluster ID Markers Cell Type


0 IL7R, CCR7 Naive CD4+ T
1 CD14, LYZ CD14+ Mono
2 IL7R, S100A4 Memory CD4+
3 MS4A1 B
4 CD8A CD8+ T
5 FCGR3A, MS4A7 FCGR3A+ Mono
6 GNLY, NKG7 NK
7 FCER1A, CST3 DC
8 PPBP Platelet

new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",
    "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
saveRDS(pbmc, file = "data/pbmc3k_final.rds")

至此,Seurat分析的常规流程就结束了。

Ref:

Seurat - Guided Clustering Tutorial: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

你可能感兴趣的:(R-Seurat单细胞数据分析流程)