分布式事务Seata


文章目录

  • 一. 分布式事务理论基础
    • 1. 事务的ACID原则
    • 2. 分布式事务
    • 3. CAP定理
      • 1.一致性
      • 2. 可用性
      • 3. 分区容错
      • 4. 矛盾
    • 4. BASE理论
      • 1. 解决分布式事务的思路
  • 二. 初识Seata
    • 1. Seata的架构
    • 3. 事务处理过程
    • 4. 部署TC服务
      • 1. 修改配置
      • 2. 在nacos添加配置
      • 3. 创建数据库表
      • 4. 启动服务
    • 5. 微服务集成Seata
      • 1. 引入依赖
      • 2. 配置TC地址
  • 三. Seata四种事务模式
    • 1. XA模式
      • 1. 两阶段性提交
      • 2. Seata的XA模型
      • 3. 优缺点
      • 4. 实现XA模式
    • 2. AT模式
      • 1. Seata的AT模型
      • 2. 流程梳理
      • 3. AT与XA的区别
      • 4. 脏写问题
      • 5. 优缺点
      • 6. 实现TA模式
    • 3. TCC模式
      • 1. 流程分析
      • 2. Seata的TCC模型
      • 3. 优缺点
      • 4. 事务悬挂和空回滚
        • (1)空回滚
        • (2)业务悬挂
    • 4. SAGA模式
      • 1. 原理
      • 2. 优缺点
  • 四. 四种业务模式对比
  • 五. 高可用
      • 1. 高可用构架模型
      • 2. TC服务的高可用和异地容灾
      • 3. 将事务组映射配置到nacos
      • 4. 微服务读取nacos配置


一. 分布式事务理论基础

1. 事务的ACID原则

关于事务的ACID这里就不用专业的术语阐述了,想了解的更清楚的小伙伴可以翻阅相关文章,事务的ACID原则主要包含以下四个特性:

  • 原子性:事务中的所有操作,要么全部成功,要么全部失败。
  • 一致性:要保证数据库内部完整性约束、声明性约束。
  • 隔离性:对同一资源操作的事务不能同时发生。
  • 持久性:对数据库做的一切修改将永久保存,不管是否出现故障。

2. 分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库。
分布式事务Seata_第1张图片
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
此时ACID难以满足,这是分布式事务要解决的问题

3. CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)
    分布式事务Seata_第2张图片

它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

1.一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
比如现在包含两个节点,其中的初始数据是一致的:
分布式事务Seata_第3张图片
当我们修改其中一个节点的数据时,两者的数据产生了差异:
分布式事务Seata_第4张图片
要想保住一致性,就必须实现node01 到 node02的数据 同步:
分布式事务Seata_第5张图片

2. 可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
如图,有三个节点的集群,访问任何一个都可以及时得到响应:
分布式事务Seata_第6张图片
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
分布式事务Seata_第7张图片

3. 分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
分布式事务Seata_第8张图片
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

4. 矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
当节点接收到新的数据变更时,就会出现问题了:
分布式事务Seata_第9张图片
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。
如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

4. BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

1. 解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)
分布式事务Seata_第10张图片
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

二. 初识Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
官网地址:点击跳转,其中的文档、播客中提供了大量的使用说明、源码分析。
分布式事务Seata_第11张图片

1. Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。

  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。

  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

整体的架构如图:
分布式事务Seata_第12张图片
Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

3. 事务处理过程

  1. TM向TC申请开启一个全局事务,全局事务创建成功并生成一个全局唯一的XID;
  2. XID在微服务调用链路的上下文中传播;
  3. RM向TC注册分支事务,将其纳入XID对应全局事务的管辖:
  4. TM向TC发起针对XID的全局提交或回滚决议;
  5. TC调度XID下管辖的全部分支事务完成提交或回滚请求。

分布式事务Seata_第13张图片

4. 部署TC服务

首先我们要下载seata-server包,地址: 点击跳转,或者: 点击跳转
分布式事务Seata_第14张图片
Linux版本下载tar.gz后缀的,Windows版本下载zip后缀的文件。
这里就以Windows的安装为例子:
请添加图片描述
下载完成后,在非中文目录解压缩这个zip包,其目录结构如下:
分布式事务Seata_第15张图片

1. 修改配置

修改conf目录下的registry.conf文件:
分布式事务Seata_第16张图片
内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    application = "seata-tc-server"  # 服务注册到 nacos的服务名称,可以自定义
    serverAddr = "127.0.0.1:8848" #nacos服务地址
    group = "DEFAULT_GROUP" # 当前服务所在的组
    namespace = "" 
    cluster = "SH" #集群名称
    username = "nacos" #账号
    password = "nacos" #密码
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties" # nacos配置文件名
  }
}

选定注册中心类型后其他注册中心的配置可以删除

2. 在nacos添加配置

特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。
格式如下:
分布式事务Seata_第17张图片
配置内容如下:

# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=123
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000

# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898

3. 创建数据库表

特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,你需要提前创建好这些表。
新建一个名为seata的数据库然后执行建表的SQL脚本: db_store.sql
注意: 建表SQL脚本在seata-server-0.9.0\seata\conf目录里面
这些表主要记录全局事务、分支事务、全局锁信息:

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- 分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table`  (
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `status` tinyint(4) NULL DEFAULT NULL,
  `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime(6) NULL DEFAULT NULL,
  `gmt_modified` datetime(6) NULL DEFAULT NULL,
  PRIMARY KEY (`branch_id`) USING BTREE,
  INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

-- ----------------------------
-- 全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table`  (
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `status` tinyint(4) NOT NULL,
  `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `timeout` int(11) NULL DEFAULT NULL,
  `begin_time` bigint(20) NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`xid`) USING BTREE,
  INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
  INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

SET FOREIGN_KEY_CHECKS = 1;

4. 启动服务

进入bin目录,运行其中的seata-server.bat即可:
分布式事务Seata_第18张图片
启动成功后,seata-server应该已经注册到nacos注册中心了。
打开浏览器,访问nacos地址:http://localhost:8848,然后进入服务列表页面,可以看到seata-tc-server的信息:分布式事务Seata_第19张图片
如果要高可用化,可以多部署几个相关的服务。

5. 微服务集成Seata

1. 引入依赖

首先在微服务中引入依赖:


<dependency>
    <groupId>com.alibaba.cloudgroupId>
    <artifactId>spring-cloud-starter-alibaba-seataartifactId>
    <exclusions>
         
        <exclusion>
            <artifactId>seata-spring-boot-starterartifactId>
            <groupId>io.seatagroupId>
        exclusion>
    exclusions>
dependency>
<dependency>
    <groupId>io.seatagroupId>
    <artifactId>seata-spring-boot-starterartifactId>
    
    <version>${seata.version}version>
dependency>

2. 配置TC地址

在微服务的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 127.0.0.1:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-tc-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: seata-demo # 事务组名称
  service:
    vgroup-mapping: # 事务组与cluster的映射关系
      seata-demo: SH

微服务如何根据这些配置寻找TC的地址呢?

我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:

  • namespace:命名空间
  • group:分组
  • application:服务名
  • cluster:集群名

以上四个信息,在Nacos的yaml文件中都能找到:
分布式事务Seata_第20张图片
namespace为空,就是默认的public
结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。

三. Seata四种事务模式

下面我们就一起学习下Seata中的四种不同的事务模式。

1. XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

1. 两阶段性提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
正常情况:
分布式事务Seata_第21张图片
异常情况:
分布式事务Seata_第22张图片
一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

2. Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
分布式事务Seata_第23张图片
RM一阶段的工作:

​ ① 注册分支事务到TC

​ ② 执行分支业务sql但不提交

​ ③ 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态

    a.如果都成功,通知所有RM提交事务

    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

3. 优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

4. 实现XA模式

Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
(1)修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:
  data-source-proxy-mode: XA

(2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法:
分布式事务Seata_第24张图片
3)重启服务并测试
重启微服务,再次测试,发现无论怎样,三个微服务都能成功回滚。

2. AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

1. Seata的AT模型

基本流程图:
分布式事务Seata_第25张图片
阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

2. 流程梳理

我们用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

id money
1 100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段:

1)TM发起并注册全局事务到TC

2)TM调用分支事务

3)分支事务准备执行业务SQL

4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{
    "id": 1, "money": 100
}

5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90

6)RM报告本地事务状态给TC

二阶段:

1)TM通知TC事务结束

2)TC检查分支事务状态

​ a)如果都成功,则立即删除快照

​ b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100
流程图:
分布式事务Seata_第26张图片

3. AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

4. 脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
分布式事务Seata_第27张图片
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
分布式事务Seata_第28张图片
如果事务2并非seata管理的事务,那么他就不需要去拿到锁可以直接操作数据,但是事务1保存快照时会保存两份快照,一份是修改前的数据快照(before-image),一份是修改数据库后的数据快照(after-image),发生回滚的话会拿after-image和现阶段数据进行对比如果不同则会发出异常。
分布式事务Seata_第29张图片

5. 优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好
  • 利用全局锁实现读写隔离
  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致
  • 框架的快照功能会影响性能,但比XA模式要好很多

6. 实现TA模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照。
将下面的SQL导入到Seata的seata数据库中

/*
 Navicat Premium Data Transfer

 Source Server         : local
 Source Server Type    : MySQL
 Source Server Version : 50622
 Source Host           : localhost:3306
 Source Schema         : seata_demo

 Target Server Type    : MySQL
 Target Server Version : 50622
 File Encoding         : 65001

 Date: 20/06/2021 12:39:03
*/

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- Table structure for undo_log 快照表
-- ----------------------------
DROP TABLE IF EXISTS `undo_log`;
CREATE TABLE `undo_log`  (
  `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',
  `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',
  `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',
  `rollback_info` longblob NOT NULL COMMENT 'rollback info',
  `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',
  `log_created` datetime(6) NOT NULL COMMENT 'create datetime',
  `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',
  UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;

-- ----------------------------
-- Records of undo_log
-- ----------------------------



-- ----------------------------
-- Table structure for lock_table 全局锁表
-- ----------------------------
DROP TABLE IF EXISTS `lock_table`;
CREATE TABLE `lock_table`  (
  `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `branch_id` bigint(20) NOT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`row_key`) USING BTREE,
  INDEX `idx_branch_id`(`branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;


SET FOREIGN_KEY_CHECKS = 1;

导入表后,修改application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

3. TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

1. 流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初识余额:
请添加图片描述
余额充足,可以冻结:
请添加图片描述
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
请添加图片描述
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:
请添加图片描述

2. Seata的TCC模型

Seata中的TCC模型依然延续之前的事务架构,如图:
分布式事务Seata_第30张图片

3. 优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

4. 事务悬挂和空回滚

(1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚
如图:
分布式事务Seata_第31张图片
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

(2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

4. SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html

1. 原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
分布式事务Seata_第32张图片
Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

2. 优缺点

优点:

  • 事务参与者可以基于事件驱动实现异步调用,吞吐高
  • 一阶段直接提交事务,无锁,性能好
  • 不用编写TCC中的三个阶段,实现简单

缺点:

  • 软状态持续时间不确定,时效性差
  • 没有锁,没有事务隔离,会有脏写

四. 四种业务模式对比

我们从以下几个方面来对比四种实现:

  • 一致性:能否保证事务的一致性?强一致还是最终一致?
  • 隔离性:事务之间的隔离性如何?
  • 代码侵入:是否需要对业务代码改造?
  • 性能:有无性能损耗?
  • 场景:常见的业务场景

如图:
分布式事务Seata_第33张图片

五. 高可用

1. 高可用构架模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。
比如一个TC集群在上海,另一个TC集群在杭州:
分布式事务Seata_第34张图片
微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。

2. TC服务的高可用和异地容灾

计划启动两台seata的tc服务节点:

节点名称 ip地址 端口号 集群名称
seata 127.0.0.1 8091 SH
seata2 127.0.0.1 8092 HZ

之前我们已经启动了一台seata服务,端口是8091,集群名为SH。

现在,将seata目录复制一份,起名为seata2

修改seata2/conf/registry.conf内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "DEFAULT_GROUP"
    namespace = ""
    cluster = "HZ"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

进入seata2/bin目录,然后运行命令:

seata-server.bat -p 8092

打开nacos控制台,查看服务列表:
请添加图片描述
点进详情查看:
分布式事务Seata_第35张图片

3. 将事务组映射配置到nacos

接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。
新建一个配置:
分布式事务Seata_第36张图片
配置的内容如下:

# 事务组映射关系
service.vgroupMapping.seata-demo=SH

service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000

# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100

4. 微服务读取nacos配置

接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:
  config:
    type: nacos
    nacos:
      server-addr: 127.0.0.1:8848
      username: nacos
      password: nacos
      group: SEATA_GROUP
      data-id: client.properties

重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。

你可能感兴趣的:(Springcloud,分布式,数据库,java)