“”"
官方教程:
训练集和测试集下载
“”"
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root=“./data/”,
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root=“./data/”,
train=False,
download=True,
transform=ToTensor()
)
labels_map = {
0: “T-Shirt”,
1: “Trouser”,
2: “Pullover”,
3: “Dress”,
4: “Coat”,
5: “Sandal”,
6: “Shirt”,
7: “Sneaker”,
8: “Bag”,
9: “Ankle Boot”,
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item() # 随机取出数据,获取下标
img, label = training_data[sample_idx] # tensor格式的图片,label标签
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis(“off”)
plt.imshow(img.squeeze(), cmap=“gray”)
plt.show()
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
“”"
自定义Dataset类必须实现三个函数:init、len__和__getitem。
看看这个实现;
FashionMNIST图像存储在目录img_dir中,
它们的标签分别存储在CSV文件annotations_file中
“”"
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
"""
__init__函数在实例化Dataset对象时运行一次。
我们初始化包含图像、注释文件和两种转换的目录(下一节将详细介绍)。
"""
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
"""
__len__函数返回数据集中的样本数量。
"""
return len(self.img_labels)
def __getitem__(self, idx):
"""
__getitem__函数从给定索引idx的数据集中加载并返回一个示例。
根据索引,它确定图像在磁盘上的位置,使用read_image将其转换为一个张量,并从self中的csv数据中检索相应的标签。
Img_labels,调用它们上的转换函数(如果适用),并在一个元组中返回张量image和相应的标签。
"""
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}“)
print(f"Labels batch shape: {train_labels.size()}”)
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap=“gray”)
plt.show()
print(f"Label: {label}")
“”"
/**
_ooOoo_
o8888888o
88" . "88
(| -_- |)
O\ = /O
____/`---'\____
. ' \\| |// `.
/ \\||| : |||// \
/ _||||| -:- |||||- \
| | \\\ - /// | |
| \_| ''\---/'' | |
\ .-\__ `-` ___/-. /
___`. .' /--.--\ `. . __
."" '< `.___\_<|>_/___.' >'"".
| | : `- \`.;`\ _ /`;.`/ - ` : | |
\ \ `-. \_ __\ /__ _/ .-` / /
-.____
-._/.-`__.-’ `=---='
佛祖保佑 永无BUG
“”"