极客时间 MySQL 实战 笔记01

https://www.cnblogs.com/liulvzhong/articles/9242299.html

01 一条SQL查询语句是如何执行的

极客时间 MySQL 实战 笔记01_第1张图片

大体来说,MySQL 可以分为 Server 层和存储引擎层两部分。

Server 层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。

而存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持 InnoDB、MyISAM、Memory 等多个存储引擎。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始成为了默认存储引擎

连接命令中的 mysql 是客户端工具,用来跟服务端建立连接。在完成经典的 TCP 握手后,连接器就要开始认证你的身份

   数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个

     建立连接的过程通常是比较复杂的,所以我建议你在使用中要尽量减少建立连接的动作,也就是尽量使用长连接。

但是全部使用长连接后,你可能会发现,有些时候 MySQL 占用内存涨得特别快,这是因为 MySQL 在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是 MySQL 异常重启了。

怎么解决这个问题呢?你可以考虑以下两种方案。

定期断开长连接。使用一段时间,或者程序里面判断执行过一个占用内存的大查询后,断开连接,之后要查询再重连。

如果你用的是 MySQL 5.7 或更新版本,可以在每次执行一个比较大的操作后,通过执行 mysql_reset_connection 来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。

   但是大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利。查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低。除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存。

需要注意的是,MySQL 8.0 版本直接将查询缓存的整块功能删掉了,也就是说 8.0 开始彻底没有这个功能了.

分析器: 词法分析,语法分析

优化器:表里有多个索引,决定使用哪个索引

执行器:先检查权限,然后根据表中的数据执行

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02 | 日志系统:一条SQL更新语句是如何执行的?

    与查询流程不一样的是,更新流程还涉及两个重要的日志模块,它们正是我们今天要讨论的主角:redo log(重做日志)和 binlog(归档日志)。如果接触 MySQL,那这两个词肯定是绕不过的,我后面的内容里也会不断地和你强调。不过话说回来,redo log 和 binlog 在设计上有很多有意思的地方,这些设计思路也可以用到你自己的程序里。

   在一个表上有更新的时候,跟这个表有关的查询缓存会失效,所以这条语句就会把表 T 上所有缓存结果都清空。这也就是我们一般不建议使用查询缓存的原因

WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘

   具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做,这就像打烊以后掌柜做的事。

极客时间 MySQL 实战 笔记01_第2张图片

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为 crash-safe

 重要的日志模块:

   binlog前面我们讲过,MySQL 整体来看,其实就有两块:一块是 Server 层,它主要做的是 MySQL 功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的粉板 redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)

我想你肯定会问,为什么会有两份日志呢?

    因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。

   而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。这两种日志有以下三点不同。

1. redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。

2. redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。

3. redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

更新Sql语句执行流程

两阶段提交为什么必须有“两阶段提交”呢?这是为了让两份日志之间的逻辑一致

1.先写 redo log 后写 binlog。假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程异常重启。由于我们前面说过的,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。

  2.先写 binlog 后写 redo log。如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了“把 c 从 0 改成 1”这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。

可以看到,如果不使用“两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致。

03 | 事务隔离:为什么你改了我还看不见

隔离性与隔离级别提到事务,你肯定会想到 ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性),今天我们就来说说其中 I,也就是“隔离性”。

当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。

在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。下面我逐一为你解释:

读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。

读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。

可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。

串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

  极客时间 MySQL 实战 笔记01_第3张图片

我们来看看在不同的隔离级别下,事务 A 会有哪些不同的返回结果,也就是图里面 V1、V2、V3 的返回值分别是什么。

若隔离级别是“读未提交”, 则 V1 的值就是 2。这时候事务 B 虽然还没有提交,但是结果已经被 A 看到了。因此,V2、V3 也都是 2。

若隔离级别是“读提交”,则 V1 是 1,V2 的值是 2。事务 B 的更新在提交后才能被 A 看到。所以, V3 的值也是 2。

若隔离级别是“可重复读”,则 V1、V2 是 1,V3 是 2。之所以 V2 还是 1,遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。

若隔离级别是“串行化”,则在事务 B 执行“将 1 改成 2”的时候,会被锁住。直到事务 A 提交后,事务 B 才可以继续执行。所以从 A 的角度看, V1、V2 值是 1,V3 的值是 2。

假设你在管理一个个人银行账户表。一个表存了每个月月底的余额,一个表存了账单明细。这时候你要做数据校对,也就是判断上个月的余额和当前余额的差额,是否与本月的账单明细一致。你一定希望在校对过程中,即使有用户发生了一笔新的交易,也不影响你的校对结果。这时候使用“可重复读”隔离级别就很方便。事务启动时的视图可以认为是静态的,不受其他事务更新的影响

事务隔离的实现理解了事务的隔离级别,我们再来看看事务隔离具体是怎么实现的。

这里我们展开说明“可重复读”。在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。

假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录

极客时间 MySQL 实战 笔记01_第4张图片

当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到

长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。

在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。我见过数据只有 20GB,而回滚段有 200GB 的库。最终只好为了清理回滚段,重建整个库。

除了对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库,这个我们会在后面讲锁的时候展开。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04 | 深入浅出索引(上)

  索引的常见模型

      索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。

极客时间 MySQL 实战 笔记01_第5张图片

    这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

    如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据

极客时间 MySQL 实战 笔记01_第6张图片

       为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了

     InnoDB 的索引模型在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。每一个索引在 InnoDB 里面对应一棵 B+ 树

极客时间 MySQL 实战 笔记01_第7张图片

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;

如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。

   也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择

05 | 深入浅出索引(下)

在下面这个表 T 中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行

极客时间 MySQL 实战 笔记01_第8张图片

现在,我们一起来看看这条 SQL 查询语句的执行流程:

1.在 k 索引树上找到 k=3 的记录,取得 ID = 300;

2.再到 ID 索引树查到 ID=300 对应的 R3;

3.在 k 索引树取下一个值 k=5,取得 ID=500;

4.再回到 ID 索引树查到 ID=500 对应的 R4;

5.在 k 索引树取下一个值 k=6,不满足条件,循环结束

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)

    覆盖索引如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

极客时间 MySQL 实战 笔记01_第9张图片

可以看到,索引项是按照索引定义里面出现的字段顺序排序的

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的

那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。这时候,我们要考虑的原则就是空间了

极客时间 MySQL 实战 笔记01_第10张图片

  而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

极客时间 MySQL 实战 笔记01_第11张图片

极客时间 MySQL 实战 笔记01_第12张图片

在图 3 和 4 这两个图里面,每一个虚线箭头表示回表一次。图 3 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

06 | 全局锁和表锁 :给表加个字段怎么有这么多阻碍?

全局锁顾名思义,全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。

以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。但是让整库都只读,听上去就很危险:如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

      你也许会问,既然要全库只读,为什么不使用 set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。

MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。

读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。

读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

极客时间 MySQL 实战 笔记01_第13张图片

07 | 行锁功过:怎么减少行锁对性能的影响?

    MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一

   也就是说,在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

极客时间 MySQL 实战 笔记01_第14张图片

这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。

另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

在 InnoDB 中,innodb_lock_wait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。

但是,我们又不可能直接把这个时间设置成一个很小的值,比如 1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源。

一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。

     你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗

08 | 事务到底是隔离的还是不隔离的?

  在第 3 篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事务 T 看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。

极客时间 MySQL 实战 笔记01_第15张图片

begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令。

第一种启动方式,一致性视图是在执行第一个快照读语句时创建的;

第二种启动方式,一致性视图是在执行 start transaction with consistent snapshot 时创建的。

极客时间 MySQL 实战 笔记01_第16张图片

“快照”在 MVCC 里是怎么工作的?

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。

这时,你会说这看上去不太现实啊。如果一个库有 100G,那么我启动一个事务,MySQL 就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。

实际上,我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的。InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。

也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

极客时间 MySQL 实战 笔记01_第17张图片

你可能会问,前面的文章不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?

  实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来

   按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见

在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。

数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

极客时间 MySQL 实战 笔记01_第18张图片

这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

1.如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;

2.如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;

3.如果落在黄色部分,那就包括两种情况

a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;

b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。

所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

这里,我们不妨做如下假设:

1.事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;

2.事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;

3.三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]。

极客时间 MySQL 实战 笔记01_第19张图片

从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。

第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。

你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了

好,现在事务 A 要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:

找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;

接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;

再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。

这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读

所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

版本未提交,不可见;

版本已提交,但是是在视图创建后提交的,不可见

版本已提交,而且是在视图创建前提交的,可见

现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:

(1,3) 还没提交,属于情况 1,不可见;

(1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见

(1,1) 是在视图数组创建之前提交的,可见

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

更新逻辑

细心的同学可能有疑问了:事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?

你看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?

极客时间 MySQL 实战 笔记01_第20张图片

是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。

但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。

所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)

因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。

所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3

这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读。

所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。

极客时间 MySQL 实战 笔记01_第21张图片

事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?

这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读

极客时间 MySQL 实战 笔记01_第22张图片

现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;

读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图

极客时间 MySQL 实战 笔记01_第23张图片

这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:

(1,3) 还没提交,属于情况 1,不可见;

(1,2) 提交了,属于情况 3,可见。

所以,这时候事务 A 查询语句返回的是 k=2。

显然地,事务 B 查询结果 k=3

对于可重复读,查询只承认在事务启动前就已经提交完成的数据;

对于读提交,查询只承认在语句启动前就已经提交完成的数据;

而当前读,总是读取已经提交完成的最新版本

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Mysql中MVCC的使用及原理详解

准备

测试环境:Mysql 5.7.20-log

数据库默认隔离级别:RR(Repeatable Read,可重复读),MVCC主要适用于Mysql的RC,RR隔离级别

创建一张存储引擎为testmvcc的表,sql为:

 
  1. CREATE TABLE testmvcc (

  2. id int(11) DEFAULT NULL,

  3. name varchar(11) DEFAULT NULL

  4. ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

什么是MVCC?

英文全称为Multi-Version Concurrency Control,翻译为中文即 多版本并发控制。在小编看来,他无非就是乐观锁的一种实现方式。在Java编程中,如果把乐观锁看成一个接口,MVCC便是这个接口的一个实现类而已。

Mysql中MVCC的使用及原理详解

特点

1.MVCC其实广泛应用于数据库技术,像Oracle,PostgreSQL等也引入了该技术,即适用范围广

2.MVCC并没有简单的使用数据库的行锁,而是使用了行级锁,row_level_lock,而非InnoDB中的innodb_row_lock.

基本原理

MVCC的实现,通过保存数据在某个时间点的快照来实现的。这意味着一个事务无论运行多长时间,在同一个事务里能够看到数据一致的视图。根据事务开始的时间不同,同时也意味着在同一个时刻不同事务看到的相同表里的数据可能是不同的。

基本特征

  • 每行数据都存在一个版本,每次数据更新时都更新该版本。
  • 修改时Copy出当前版本随意修改,各个事务之间无干扰。
  • 保存时比较版本号,如果成功(commit),则覆盖原记录;失败则放弃copy(rollback)

InnoDB存储引擎MVCC的实现策略

在每一行数据中额外保存两个隐藏的列:当前行创建时的版本号和删除时的版本号(可能为空,其实还有一列称为回滚指针,用于事务回滚,不在本文范畴)。这里的版本号并不是实际的时间值,而是系统版本号。每开始新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务的版本号,用来和查询每行记录的版本号进行比较。

每个事务又有自己的版本号,这样事务内执行CRUD操作时,就通过版本号的比较来达到数据版本控制的目的。

MVCC下InnoDB的增删查改是怎么work的

1.插入数据(insert):记录的版本号即当前事务的版本号

执行一条数据语句:insert into testmvcc values(1,"test");

假设事务id为1,那么插入后的数据行如下:

Mysql中MVCC的使用及原理详解

2、在更新操作的时候,采用的是先标记旧的那行记录为已删除,并且删除版本号是事务版本号,然后插入一行新的记录的方式。

比如,针对上面那行记录,事务Id为2 要把name字段更新

update table set name= 'new_value' where id=1;

Mysql中MVCC的使用及原理详解

3、删除操作的时候,就把事务版本号作为删除版本号。比如

delete from table where id=1;

Mysql中MVCC的使用及原理详解

4、查询操作:

从上面的描述可以看到,在查询时要符合以下两个条件的记录才能被事务查询出来:

1) 删除版本号未指定或者大于当前事务版本号,即查询事务开启后确保读取的行未被删除。(即上述事务id为2的事务查询时,依然能读取到事务id为3所删除的数据行)

2) 创建版本号 小于或者等于 当前事务版本号 ,就是说记录创建是在当前事务中(等于的情况)或者在当前事务启动之前的其他事物进行的insert。

(即事务id为2的事务只能读取到create version<=2的已提交的事务的数据集)

补充:

1.MVCC手段只适用于Msyql隔离级别中的读已提交(Read committed)和可重复读(Repeatable Read).

2.Read uncimmitted由于存在脏读,即能读到未提交事务的数据行,所以不适用MVCC.

原因是MVCC的创建版本和删除版本只要在事务提交后才会产生。

3.串行化由于是会对所涉及到的表加锁,并非行锁,自然也就不存在行的版本控制问题。

4.通过以上总结,可知,MVCC主要作用于事务性的,有行锁控制的数据库模型。

关于Mysql中MVCC的总结

客观上,我们认为他就是乐观锁的一整实现方式,就是每行都有版本号,保存时根据版本号决定是否成功。

但由于Mysql的写操作会加排他锁(前文有讲),如果锁定了还算不算是MVCC?

了解乐观锁的小伙伴们,都知道其主要依靠版本控制,即消除锁定,二者相互矛盾,so从某种意义上来说,Mysql的MVCC并非真正的MVCC,他只是借用MVCC的名号实现了读的非阻塞而已。

你可能感兴趣的:(mysql)