环境:springboot2.3.9 + Guava30.1.1-jre
限流算法
一般有漏桶算法和令牌桶算法及计数器三种方式。
用计数器实现限流有点简单粗暴,一般我们会限 制一秒钟的能够通过的请求数,比如限流QPS为100,算法的实现思路就是从第一个请求进来开始计时,在接下去的1s内,每来一个请求,就把计数加1,如果累加的数字达到了100,那么后续的请求就会被全部拒绝。等到1s结束后,把计数恢复成0,重新开始计数。
具体的实现可以是这样的:对于每次服务调用,可以通过 AtomicLong#incrementAndGet()方法来给计数器加1并返回最新值,通过这个最新值和阈值进行比较。
这种实现方式,有一个弊端:如果我在单位时间1s内的前10ms,已经通过了100个请求,那后面的990ms,只能眼巴巴的把请求拒绝,我们把这种现象称为“突刺现象”。
漏桶算法主要是控制数据注入到网络的速率,平滑网络上的突发流量。漏桶算法提供了一种机制,通过它,突发流量可以被整形以便为网络提供一个稳定的流量。
漏桶可以看作是一个带有常量服务时间的单服务器队列,如果漏桶(包缓存)溢出,那么数据包会被丢弃。 在网络中,漏桶算法可以控制端口的流量输出速率,平滑网络上的突发流量,实现流量整形,从而为网络提供一个稳定的流量。
如图所示,把请求比作是水,水来了都先放进桶里,并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
image
可以看出,漏桶算法可以很好地控制流量的访问速度,一旦超过该速度就拒绝服务。
令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。从原理上看,令牌桶算法和漏桶算法是相反的,一个“进水”,一个是“漏水”。
image
了解完后3种限流算法后,接下来我们看看在项目中如何应用。
RateLimiter使用的是一种叫令牌桶的流控算法,RateLimiter会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行;且RateLimiter不支持集群环境,集群环境需要借助Redis等第三方工具实现。
依赖
org.springframework.boot
spring-boot-starter-web
com.google.guava
guava
30.1.1-jre
实现目标:每秒只允许3个请求通过。
@RestController
@RequestMapping("/products")
public class ProductController {
private final RateLimiter rateLimiter = RateLimiter.create(5.0) ;
@GetMapping("/{id}")
public ResponseEntity queryProducts(@PathVariable("id") String id) throws Exception {
if (rateLimiter.tryAcquire(1)) {
TimeUnit.MILLISECONDS.sleep(200) ;
return new ResponseEntity(R.success("查询商品【" + id + "】成功"), HttpStatus.OK) ;
}
return new ResponseEntity(R.failure("你访问的太快了"), HttpStatus.INTERNAL_SERVER_ERROR) ;
}
}
通过Jmeter测试,版本5.4.1
线程配置,100个并发循环2次
接口配置
测试结果
RateLimiter相关方法说明:
参考https://ifeve!com/guava-ratelimiter
ratelimiter-spring-boot-starter为服务端限流的SDK,提供单节点维度的限流功能,通过限流算法,在流量过大时保证服务端按照一定速率平滑处理请求。
基于Spring Boot框架开发,目的是为Spring Cloud项目增加限流功能,同样在Spring Boot项目中也能正常使用。 本Starter的目前的应用场景为在Spring Cloud/Spring Boot的Web项目中引入该限流Starter,配置限流规则开启限流功能。 非Spring Web项目的特性正在规划中。
限流维度为:节点级、方法维度、服务维度限流。
目前方法级只提供http方法的规则配置与生效,后续有计划支持Rpc方法的限流。
依赖
com.baidubce.formula
ratelimiter-spring-boot-starter
2.1.1.1
应用配置
spring:
application:
name: ratelimiter
---
formula:
ratelimiter:
enabled: true
ratelimiters:
# 限流生效的位置,配置具体的uri
- effectiveLocation: /products/q/**
# 限流类型:1表示http,2表示rpc(暂未支持)
effectiveType: 1
# 该规则是否生效
enabled: true
httpMethod: GET
# 限流器类型,1表示令牌桶
limiterType: 1
# 请求来源,当前版本不区分请求来源,区分请求来源的需求正在开发
# source:
# 限流的QPS值
threshold: 5
注意:这里的spring.application.name必须配置,不然启动报错;
formula.ratelimiter.ratelimiters.source这个没有搞懂怎么配置的,官方文档没找到。
接口
@GetMapping("/q/{id}")
public ResponseEntity queryProduct(@PathVariable("id") String id) throws Exception {
TimeUnit.MILLISECONDS.sleep(200) ;
return new ResponseEntity(R.success("查询商品【" + id + "】成功"), HttpStatus.OK) ;
}
测试
对于失败的请求,返回状态码429(Too Many Request)
baidu的这个限流工具,核心过滤器:
RateLimiterEffectiveFilter.java
waitForPermit方法
waitForPermission方法
HttpUtil#isBlockException方法
看到这里你想修改返回信息只能是重写它的代码了。
重写该类:
在我们项目src新建
com.baidu.formula.ratelimiter.spring.boot.autoconfigure.util.HttpUtil类修改isBlockException方法
public static boolean isBlockException(HttpServletResponse response, Exception e) throws IOException {
if (e instanceof BlockException) {
response.setStatus(429); // too many request
response.setContentType("application/json; charset=utf-8");
response.setCharacterEncoding("UTF-8");
response.getWriter().print("{\"code\": -1, \"message\": \"你的请求太快了\"}") ;
response.flushBuffer();
return true;
} else {
return false;
}
}
测试:
完毕!!!
给个关注+转发呗谢谢