show engines;命令可以可以查看当前MySQL支持的存储引擎有哪些,以及这些存储引擎是否支持事务。
可以看出,在MySQL中,只有InnoDB存储引擎是支持事务的。
事务:一组逻辑操作单元,使数据从一种状态变换到另一种状态。
事务处理的原则:保证所有事务都作为一个工作单元来执行,即使出现了故障,都不能改变这种执行方 式。当在一个事务中执行多个操作时,要么所有的事务都被提交(commit),那么这些修改就永久地保存下来;要么数据库管理系统将放弃所做的所有修改,整个事务回滚( rollback )到最初状态。
举一个在讲解事务时最经典的例子:
银行转账:AA用户给BB用户转账100元,则在AA用户的账户余额中减100,BB用户的账户余额加100,如果没有事务控制的情况下,AA用户转账成功,这时服务器发生了故障,导致BB用户并没有收到这笔转账,这样就出现问题了。
# 案例:AA用户给BB用户转账100
update account set money = money - 100 where name = 'AA';
# 服务器宕机
update account set money = money + 100 where name = 'BB';
原子性(Atomicity)
原子性是指事务是一个不可分割的工作单位,要么全部提交,要么全部失败回滚。即要么转账成功,要么转账失败,是不存在中间的状态。如果无法保证原子性会怎么样?就会出现数据不一致的情形,A账户减去100元,而B账户增加100元操作失败,系统将无故丢失100元。
一致性(Consistency)
根据定义,一致性是指事务执行前后,数据从一个合法性状态变换到另外一个合法性状态。这种状态是语义上的而不是语法上的,跟具体的业务有关。
那什么是合法的数据状态呢?满足预定的约束的状态就叫做合法的状态。通俗一点,这状态是由你自己来定义的(比如满足现实世界中的约束)。满足这个状态,数据就是一致的,不满足这个状态,数据就是不一致的!如果事务中的某个操作失败了,系统就会自动撤销当前正在执行的事务,返回到事务操作 之前的状态。
举例1:A账户有200元,转账300元出去,此时A账户余额为-100元。你自然就发现此时数据是不一致的,为什么呢?因为你定义了一个状态,余额这列必须>=0。
举例2:A账户有200元,转账50元给B账户,A账户的钱扣了,但是B账户因为各种意外,余额并没有增加。你也知道此时的数据是不一致的,为什么呢?因为你定义了一个状态,要求A+B的总余额必须不变。
举例3:在数据表中我们将姓名设置为唯一性约束,这时当事务进行提交或者事务发生回滚的时候,如果数据表的姓名不唯一,就破坏了事物的一致性要求。
隔离性(isolation)
事务的隔离性是指一个事务的执行不能被其他事务干扰,即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能相互干扰。
如果无法保证隔离性会怎么样?假设A账户有200元,B账户0元。A账户往B账户转账两次,每次金额为50 元,分别在两个事务中执行。如果无法保证隔离性,会出现下面的情形:
UPDATE accounts SET money = money - 50 WHERE NAME = 'AA';
UPDATE accounts SET money = money + 50 WHERE NAME = 'BB';
持久性(durability)
持久性是指一个事务一旦被提交,它对数据库中数据的改变就是永久性的,接下来的其他操作和数据库故障不应该对其有任何影响。
持久性是通过事务日志来保证的。日志包括了重做日志(Redo log)和回滚日志(Undo log) 。当我们通过事务对数据进行修改的时候,首先会将数据库的变化信息记录到重做日志中,然后再对数据库中对应的行进行修改。这样做的好处是,即使数据库系统崩溃,数据库重启后也能找到没有更新到数据库系统中的重做日志,重新执行,从而使事务具有持久性。
总结:
ACID是事务的四大特征,在这四个特性中,原子性是基础,隔离性是手段,一致性是约束条件,持久性是我们的目的。
数据库事务,其实就是数据库设计者为了方便起见,把需要保存原子性、隔离性、一致性、持久性的一个或多个数据库操作称为一个事务。
事务是一个抽象的概念,它其实对应着一个或多个数据库操作,MySQL根据这些操作所执 行的不同阶段把事务大致划分成几个状态。
1、活动的(active)
事务对应的数据库操作正在执行过程中时,我们就说该事务处在活动的状态。
2、部分提交的(partially committed )
当事务中的最后一个操作执行完成,但由于操作都在内存中执行,所造成的影响并没有刷新到磁盘时,我们就说该事务处在部分提交的状态。
3、 失败的(failed)
当事务处在活动的或者部分提交的状态时,可能遇到了某些错误(数据库自身的错误、操作系统错误或者直接断电等)而无法继续执行,或者人为的停止当前事务的执行,我们就说该事务处在失败的状态。
4、中止的(aborted)
如果事务执行了一部分而变为失败的状态,那么就需要把已经修改的事务中的操作还原到事务执行前的状态。换句话说,就是要撤销失败事务对当前数据库造成的影响。我们把这个撤销的过程称之为回滚 。当回滚操作执行完毕时,也就是数据库恢复到了执行事务之前的状态,我们就说该事务处在了中止的状态。
举例:
UPDATE accounts SET money = money - 50 WHERE NAME = 'AA';
UPDATE accounts SET money = money + 50 WHERE NAME = 'BB';
5、提交的(committed)
当一个处在部分提交状态的事务将修改过得数据都同步到磁盘上之后,我们就可以说该事务处在了提交的状态。
一个基本的状态转换图如下所示:
图中可见,只有当事物处于提交的或者中止的状态时,一个事务的生命周期才算是结束了。对于已经提交的事务来说,该事务对数据库所做的修改将永久生效,对于处于中止状态的事物,该事务对数据库所做的所有修改都会被回滚到没执行该事物之前的状态。
使用事务有两种方式,分别为显示事务和隐式事务。
步骤1:START TRANSACTION或者BEGIN,作用是显示的开启一个事务。
mysql> BEGIN;
#或者
mysql> START TRANSACTION;
START TRANSACTIO语句相较于BEGIN特别之处在于,后边能跟随几个修饰符:
① READ ONLY:标识当前事务是一个只读事务,也就是属于该事务的数据库操作只能读取数据,而不能修改数据。
补充:只读事务中只是不允许修改那些其他事务也能访问到的表中的数据,对于临时表来说(我们使用 CREATE TMEPORARY TABLE 创建的表),由于它们只能再当前会话中可见,所有只读事务其实也是可以对临时表进行增、删、改操作的。
② READ WRITE:标识当前事务是一个读写事务,也就是属于该事务的数据库操作既可以读取数据, 也可以修改数据。
③ WITH CONSISTENT SANPSHOT:启动一致性读。
比如:
START TRANSACTION READ ONLY; # 开启一个只读事务
START TRANSACTION READ ONLY, WITH CONSISTENT SNAPSHOT # 开启只读事务和一致性读
START TRANSACTION READ WRITE, WITH CONSISTENT SNAPSHOT # 开启读写事务和一致性读
注意:
READ ONLY 和 READ WRITE是用来设置的所谓的事务访问模式的,就是以只读还是读写的方式来访问数据库中的数据,一个事务的访问模式不能同时即设置为只读的也设置为读写的,所以不能同时把READ ONLY和READ WRITE放到START TRANSACTION语句后边。
如果我们不显示指定事务的访问模式,那么该事务的默认访问模式就是读写模式。
步骤2:一系列事务中的操作(主要是DML,不含DDL)
步骤3:提交事务或中止事务(即回滚事务)
# 提交事务。当提交事务后,对数据库的修改是永久性的。
mysql> COMMIT;
# 回滚事务。即撤销正在进行的所有没有提交的修改
mysql> ROLLBACK;
# 将事务回滚到某个保存点。
mysql> ROLLBACK TO [SAVEPOINT]
其中关于SAVEPOINT相关操作有:
# 在事务中创建保存点,方便后续针对保存点进行回滚。一个事务中可以存在多个保存点。
SAVEPOINT 保存点名称;
# 删除某个保存点
RELEASE SAVEPOINT 保存点名称;
MySQL中有一个系统变量autocommit:
表示事务自动提交,可以看到,默认是开启状态
mysql> SHOW VARIABLES LIKE 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)
如果想要关闭这种自动提交机制,有两种方法:
1、显式的的使用 START TRANSACTION
或者 BEGIN
语句开启一个事务。这样在本次事务提交或者回滚前会暂时关闭掉自动提交的功能。
2、把系统变量 autocommit
的值设置为 OFF
,就像这样:
SET autocommit = OFF;
#或
SET autocommit = 0;
数据库、表、视图、存储过程
等结构。当我们CREATE、ALTER、DROP
等语句去修改数据库对象时,就会隐式的提交前边语句所属于的事物。即: BEGIN;
SELECT ... # 事务中的一条语句
UPDATE ... # 事务中的一条语句
... # 事务中的其他语句
CREATE TABLE ... # 此语句会隐式的提交前边语句所属于的事务
ALTER USER
、CREATE USER
、DROP USER
、GRANT
、RENAME USER
、REVOKE
、SET PASSWORD
等语句时也会隐式的提交前边语句所属于的事务。BEGIN;
SELECT ... # 事务中的一条语句
UPDATE ... # 事务中的一条语句
... # 事务中的其他语句
BEGIN; # 此语句会隐式的提交前边语句所属于的事务
② 当前的 autocommit 系统变量的值为 OFF ,我们手动把它调为 ON 时,也会 隐式的提交前边语句所属的事务。
③ 使用 LOCK TABLES 、 UNLOCK TABLES 等关于锁定的语句也会 隐式的提交 前边语句所属的事务。
加载数据的语句
使用LOAD DATA
语句来批量往数据库中导入数据时,也会隐式的提交
前边语句所属的事务。
关于MySQL复制的一些语句
使用START SLAVE、STOP SLAVE、RESET SLAVE、CHANGE MASTER TO
等语句会隐式的提交前边语句所属的事务。
其他的一些语句
使用ANALYZE TABLE、CACHE INDEX、CAECK TABLE、FLUSH、LOAD INDEX INTO CACHE、OPTIMIZE TABLE、REPAIR TABLE、RESET
等语句也会隐式的提交前边语句所属的事务。
MySQL是一个 客户端/服务器
架构的软件,对于同一个服务器来说,可以有若干个客户端与之连接,每 个客户端与服务器连接上之后,就可以称为一个会话( Session
)。每个客户端都可以在自己的会话中 向服务器发出请求语句,一个请求语句可能是某个事务的一部分,也就是对于服务器来说可能同时处理多个事务。事务有 隔离性
的特性,理论上在某个事务 对某个数据进行访问
时,其他事务应该进行排队
,当该事务提交之后,其他事务才可以继续访问这个数据。但是这样对 性能影响太大
,我们既想保持事务的隔离性,又想让服务器在处理访问同一数据的多个事务时 性能尽量高些
,那就看二者如何权衡取舍了。
CREATE TABLE student (
studentno INT,
name VARCHAR(20),
class varchar(20),
PRIMARY KEY (studentno)
) Engine=InnoDB CHARSET=utf8;
然后向这个表里插入一条数据:
INSERT INTO student VALUES(1, '小谷', '1班');
现在表里的数据就是这样的:
mysql> select * from student;
+-----------+--------+-------+
| studentno | name | class |
+-----------+--------+-------+
| 1 | 小谷 | 1班 |
+-----------+--------+-------+
1 row in set (0.00 sec)
针对事务的隔离性和并发性,我们怎么做取舍呢?先看一下访问相同数据的事务在 不保证串行执行 (也就是执行完一个再执行另一个)的情况下可能会出现哪些问题:
1、脏写(Dirty Write)
对于两个事务 Session A、Session B,如果事务Session A 修改了
另一个 未提交
事务Session B 修改过
的数据,那就意味着发生了 脏写
,示意图如下: Session A 和 Session B 各开启了一个事务,Sesssion B 中的事务先将studentno列为1的记录的name列更新为'李四',然后Session A中的事务接着又把这条studentno列为1的记录的name列更新为'张三'。如果之后Session B中的事务进行了回滚,那么Session A中的更新也将不复存在,这种现象称之为脏写。这时Session A中的事务就没有效果了,明明把数据更新了,最后也提交事务了,最后看到的数据什么变化也没有。这里大家对事务的隔离性比较了解的话,会发现默认隔离级别下,上面Session A中的更新语句会处于等待状态,这里只是跟大家说明一下会出现这样的现象。
2、脏读(Drity Read)
对于两个事务 Session A、Session B,Session A 读取
了已经被 Session B 更新
但还 没有被提交
的字段。 之后若 Session B 回滚
,Session A 读取
的内容就是 临时且无效
的。
Session A和Session B各开启了一个事务,Session B中的事务先将studentno列为1的记录的name列更新 为'张三',然后Session A中的事务再去查询这条studentno为1的记录,如果读到列name的值为'张三',而 Session B中的事务稍后进行了回滚,那么Session A中的事务相当于读到了一个不存在的数据,这种现象就称之为 脏读
。
3、不可重复读(Non-Repeatable Read)
对于两个事务Session A、Session B,Session A 读取
了一个字段,然后 Session B 更新
了该字段。 之后 Session A 再次读取
同一个字段, 值就不同
了。那就意味着发生了不可重复读。
我们在Session B中提交了几个 隐式事务
(注意是隐式事务,意味着语句结束事务就提交了),这些事务 都修改了studentno列为1的记录的列name的值,每次事务提交之后,如果Session A中的事务都可以查看到最新的值,这种现象也被称之为 不可重复读
。
4、幻读(Phantom)
对于两个事务Session A、Session B, Session A 从一个表中 读取
了一个字段, 然后 Session B 在该表中 插 入了一些新的行。之后, 如果 Session A 再次读取
同一个表, 就会多出几行。那就意味着发生了幻读
。
Session A中的事务先根据条件 studentno > 0这个条件查询表student,得到了name列值为'张三'的记录; 之后Session B中提交了一个 隐式事务
,该事务向表student中插入了一条新记录;之后Session A中的事务 再根据相同的条件 studentno > 0查询表student,得到的结果集中包含Session B中的事务新插入的那条记 录,这种现象也被称之为 幻读 。我们把新插入的那些记录称之为 幻影记录
。
注意1:
有的可能会有疑问,如果sessionB中删除了一些符合studentno>0的记录而不是插入了新纪录,那sessionA之后再根据studentno>0的条件读取的记录变少了,这种现象算不算幻读呢?这种现象是不属于幻读的,幻读强调的是一个事务按照某个相同条件多次读取记录时,后读取时读到了没有读到的记录。
注意2:
那对于先前已经读到的记录,之后又读取不到的这种情况,算什么呢?这相当于对每一条记录都发生了不可重复读的现象,幻读只是强调了读取到了之前读取没有获取到的记录。
给上边的事务执行过程中的并发问题按照严重程度排一下序:
脏写 > 脏读 > 不可重复读 > 幻读
我们愿意舍弃一部分隔离性来换取一部分性能在这里就体现在:设立一些隔离级别,隔离级别越低,并发问题发生的就越多。SQL标准中设立了4个隔离级别:
SQL标准中规定,针对不同的隔离级别,并发事务可以发生不同严重程度的问题,具体的情况如下:
脏写怎么没涉及呢?因为脏写这个问题台严重了,不论是那种隔离级别,都不允许脏写的情况放生
不同的隔离级别有不同的现象,并有不同的锁和并发机制,隔离级别越高,数据库的并发性能就越差,4 种事务隔离级别与并发性能的关系如下:
不同的数据库厂商对SQL标准中规定的四种隔离级别支持不一样,比如,Oracle就只支持READ COMMITTED(默认隔离级别)和SERIALIZABLE隔离级别。MySQL虽然支持4种隔离级别,但与SQL标准中所规定的各级隔离级别允许发生的问题却有些出入,MySQL在REPEATABLE READ隔离级别下,是可以禁止幻读问题的发生的,这个在MVCC中可以得到解答。
MySQL的默认隔离级别为REPEATABLE READ,我们可以手动修改一下事务的隔离级别。
# 查看隔离级别,MySQL 5.7.20的版本之前:
mysql> SHOW VARIABLES LIKE 'tx_isolation';
+---------------+-----------------+
| Variable_name | Value |
+---------------+-----------------+
| tx_isolation | REPEATABLE-READ |
+---------------+-----------------+
1 row in set (0.00 sec)
# MySQL 5.7.20版本之后,引入transaction_isolation来替换tx_isolation
# 查看隔离级别,MySQL 5.7.20的版本及之后:
mysql> SHOW VARIABLES LIKE 'transaction_isolation';
+-----------------------+-----------------+
| Variable_name | Value |
+-----------------------+-----------------+
| transaction_isolation | REPEATABLE-READ |
+-----------------------+-----------------+
1 row in set (0.02 sec)
#或者不同MySQL版本中都可以使用的:
SELECT @@transaction_isolation;
SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL 隔离级别;
#其中,隔离级别格式:
> READ UNCOMMITTED
> READ COMMITTED
> REPEATABLE READ
> SERIALIZABLE
或者:
SET [GLOBAL|SESSION] TRANSACTION_ISOLATION = '隔离级别'
#其中,隔离级别格式:
> READ-UNCOMMITTED
> READ-COMMITTED
> REPEATABLE-READ
> SERIALIZABLE
关于设置时使用GLOBAL或SESSION的影响:
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
#或
SET GLOBAL TRANSACTION_ISOLATION = 'SERIALIZABLE';
SESSION
关键字(在会话范围影响): SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE;
#或
SET SESSION TRANSACTION_ISOLATION = 'SERIALIZABLE';
如果在服务器启动时想改变事务的默认隔离级别,可以修改启动参数transaction_isolation
的值。比如,在启动服务器时指定了transaction_isolation=SERIALIZABLE
,那么事务的默认隔离界别就从原来的REPEATABLE-READ
变成了SERIALIZABLE
。
总结:
数据库规定了多种事务隔离级别,不同隔离级别对应不同的干扰程度,隔离级别越高,数据一致性就越好,但并发性就越弱。
事务有4种特性:原子性、一致性、隔离性和持久性。那么事务的四种特性到底是基于什么机制实现呢?
有的人会认为UNDO是REDO的逆过程,其实不然,REDO和UNDO都可以视为是一种恢复操作,但是:
事务的回滚
(undo log 记录的是每个修改操作的 逆操作
) 和 一致性非锁定读
(undo log 回滚行记录到某种特定的版本——MVCC,即多版本并发控制)。 InnoDB存储引擎是以页为单位
来管理存储空间的。在真正访问页面之前,需要把在磁盘上
的页缓存到内存中的Buffer Pool
之后才可以访问。所有的变更都必须先更新缓冲池
中的数据,然后缓冲池中的脏页
会以一定的频率被刷入磁盘 (checkPoint
机制),通过缓冲池来优化CPU和磁盘之间的鸿沟,这样就可以保证整体的性能不会下降太快。
一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然而由于checkpoint 并不是每次变更的时候就触发
的,而是master线程隔一段时间去处理的。所以最坏的情况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。
另一方面,事务包含 持久性
的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩溃,这个事务对数据库中所做的更改也不能丢失。
那么如何保证这个持久性呢? 一个简单的做法
:在事务提交完成之前把该事务所修改的所有页面都刷新到磁盘,但是这个简单粗暴的做法有些问题:
刷新到磁盘
时,需要进行很多的随机IO
,随机IO比顺序IO要慢,尤其对于传统的机械硬盘来说。另一个解决的思路
:我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系 统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内 存中修改过的全部页面刷新到磁盘,只需要把修改了哪些东西记录一下就好。比如,某个事务将系统 表空间中 第10号 页面中偏移量为 100 处的那个字节的值 1 改成 2 。我们只需要记录一下:将第0号表 空间的10号页面的偏移量为100处的值更新为 2
InnoDB引擎的事务采用了WAL技术 (Write-Ahead Logging
),这种技术的思想就是先写日志,再写磁盘,只有日志写入成功,才算事务提交成功,这里的日志就是redo log。当发生宕机且数据未刷到磁盘的时候,可以通过redo log来恢复,保证ACID中的D,这就是redo log的作用。
好处:
特点:
产生的顺序写入磁盘的
,也就是使用顺序ID,效率比随机IO快。存储引擎层
产生的,而bin log是数据库层
产生的。假设一个事务,对表做10万行的记录插入,在这个过程中,一直不断的往redo log顺序记录,而bin log不会记录,直到这个事务提交,才会一次写入到bin log文件中。以一个更新事务为例,redo log 流转过程,如下图所示:
第1步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝
第2步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值
第3步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加写的方式
第4步:定期将内存中修改的数据刷新到磁盘中
redo log的写入并不是直接写入磁盘的,InnoDB引擎会在写redo log的时候先写redo log buffer,之后以一定的频率
刷入到真正的redo log file 中。这里的一定频率怎么看待呢?这就是我们要说的刷盘策略。
注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存 (page cache)
中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。
针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit
参数,该参数控制commit提交事务 时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:
设置为0
:表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日志的同步) 第1步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝 第2步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值 第3步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加 写的方式 第4步:定期将内存中修改的数据刷新到磁盘中设置为1
:表示每次事务提交时都将进行同步,刷盘操作( 默认值 )
设置为2
:表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自己决定什么时候同步到磁盘文件。 mysql> show variables like'innodb_flush_log_at_trx_commit';
+--------------------------------+-------+
| Variable_name | Value |
+--------------------------------+-------+
| innodb_flush_log_at_trx_commit | 1 |
+--------------------------------+-------+
1 row in set (0.01 sec)
另外,InnoDB存储引擎有一个后台线程,每隔1秒
,就会把redo log buffer
中的内容写到文件系统缓存(page cache
),然后调用刷盘操作。
也就是说,一个没有提交事务的redo log
记录,也可能会刷盘。因为在事务执行过程 redo log 记录是会写入 redo log buffer
中,这些redo log 记录会被后台线程
刷盘。
除了后台线程每秒1次
的轮询操作,还有一种情况,当redo log buffer
占用的空间即将达到innodb_log_buffer_size
(这个参数默认是16M)的一半的时候,后台线程会主动刷盘。
redo log是事务持久性的保证,undo log是事务原子性的保证。在事务中 更新数据
的 前置操作
其实是要先写入一个 undo log
。
事务需要保证 原子性
,也就是事务中的操作要么全部完成,要么什么也不做。但有时候事务执行到一半会出现一些情况,比如:
情况一:事务执行过程中可能遇到各种错误,比如服务器本身的错误
, 操作系统错误
,甚至是突然 断电
导致的错误。
情况二:程序员可以在事务执行过程中手动输入 ROLLBACK
语句结束当前事务的执行。
以上情况出现,我们需要把数据改回原先的样子,这个过程称之为 回滚
,这样就可以造成一个假象:这个事务看起来什么都没做,所以符合 原子性
要求。
每当我们要对一条记录做改动时(这里的改动可以指insert、update、delete),都需要留一手---把回滚所需要的东西记录下来。比如:
MySQL把这些为了回滚而记录的这些内容称之为撤销日志或者回滚日志(即undo log)。注意,由于查询select并不会修改任何用户记录,所以在查询操作执行的时候,并不需要记录对应的undo日志。
此外,undo log会产生redo log,也就是undo log的产生会伴随着redo log的产生,这是因为undo log也需要持久性的保护。
1、回滚段和undo页
InnoDB对undo log的管理采用段的方式,也就是 回滚段(rollback segment)
。每个回滚段记录了 1024
个 undo log segment
,而在每个undo log segment段中进行 undo页
的申请。
在InnoDB1.1版本之前
(不包括1.1版本),只有一个rollback segment,因此支持同时在线的事务限制为 1024
。虽然对绝大多数的应用来说都已经够用。
从1.1版本开始InnoDB支持最大 128个rollback segment
,故其支持同时在线的事务限制提高到 了 128*1024
。
mysql> show variables like 'innodb_undo_logs';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| innodb_undo_logs | 128 |
+------------------+-------+
undo页的重用
当我们开启一个事务需要写undo log的时候,就得先去undo log segment中去找到一个空闲的位置,当有空位的时候,就去申请undo页,在这个申请到的undo页中进行undo log的写入。我们知道mysql默认一页的大小是16k.为每一个事务分配一个页,是非常浪费的((除非你的事务非常长),假设你的应用的TPs(每秒处理的事务数目)为1000,那么1s就需要1000个页,大概需要16M的存储,1分钟大概需要1G的存储。如果照这样下去除非MySQL清理的非常勤快,否则随着时间的推移,磁盘空间会增长的非常快,而且很多空间都是浪费的。
于是undo页就被设计的可以重用了,当事务提交时,并不会立刻删除undo页。因为重用,所以这个undo页可能混杂着其他事务的undo log。undo log在commit后,会被放到一个链表中,然后判断undo页的使用空间是否小于3/4,如果小于3/4的话,则表示当前的undo页可以被重用,那么它就不会被回收,其他事务的undo log可以记录在当前undo页的后面。由于undo log是离散的,所以清理对应的磁盘空间时,效率不高。
2、回滚段与事务
每个事务只会使用一个回滚段,一个回滚段在同一时刻可能会服务于多个事务。
当一个事务开始的时候,会制定一个回滚段,在事务进行的过程中,当数据被修改时,原始的数 据会被复制到回滚段。
在回滚段中,事务会不断填充盘区,直到事务结束或所有的空间被用完。如果当前的盘区不够 用,事务会在段中请求扩展下一个盘区,如果所有已分配的盘区都被用完,事务会覆盖最初的盘 区或者在回滚段允许的情况下扩展新的盘区来使用。
回滚段存在于undo表空间中,在数据库中可以存在多个undo表空间,但同一时刻只能使用一个 undo表空间。
mysql> show variables like 'innodb_undo_tablespaces';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| innodb_undo_tablespaces | 2 |
+-------------------------+-------+
# undo log的数量,最少为2. undo log的truncate操作有purge协调线程发起。在truncate某个undo log表空间的过程中,保证有一个可用的undo log可用。
5.当事务提交时,InnoDB存储引擎会做以下两件事情:
将undo log放入列表中,以供之后的purge操作
判断undo log所在的页是否可以重用,若可以分配给下个事务使用
在InnoDB存储引擎中,undo log分为:
insert undo log
insert undo log是指insert操作中产生的undo log。因为insert操作的记录,只对事务本身可见,对其他事务不可见(这是事务隔离性的要求),故该undo log可以在事务提交后直接删除。不需要进行purge操作。
update undo log
update undo log记录的是对delete和update操作产生的undo log。该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。
1. 简要生成过程
以下是undo+redo事务的简化过程
假设有两个数值,分别为A=1和B=2,然后将A修改为3,B修改为4
只有Buffer Pool的流程:
有了Redo Log和Undo Log之后:
在更新Buffer Pool中的数据之前,我们需要先将该数据事务开始之前的状态写入Undo Log中。假设更新到一半出错了,我们就可以通过Undo Log来回滚到事务开始前。
2. 详细生成过程
对于InnoDB引擎来说,每个记录出了记录本身的数据之外,还有几个隐藏的列:
当我们执行INSERT时:
begin;
INSERT INTO user (name) VALUES ("tom");
插入的数据都会生成一条insert undo log,并且数据的回滚指针会指向它。undo log会记录undo log的序号、插入主键的列和值...,那么在进行rollback的时候,通过主键直接把对应的数据删除即可。
当我们执行UPDATE时:
对应更新的操作会产生update undo log,并且会分更新主键和不更新主键的,假设现在执行:
UPDATE user SET name="Sun" WHERE id=1;
这时会把老的记录写入新的undo log,让回滚指针指向新的undo log,它的undo no是1,并且新的undo log会指向老的undo log(undo no=0)。
假设现在执行:
UPDATE user SET id=2 WHERE id=1;
对于更新主键的操作,会先把原来的数据deletemark标识打开,这时并没有真正的删除数据,真正的删除会交给清理线程去判断,然后在后面插入一条新的数据,新的数据也会产生undo log,并且undo log的序号会递增。
可以发现每次对数据的变更都会产生一个undo log,当一条记录被变更多次时,那么就会产生多条undo log,undo log记录的是变更前的日志,并且每个undo log的序号是递增的,那么当要回滚的时候,按照序号依次向前推
,就可以找到我们的原始数据了。
3. undo log是如何回滚的
以上面的例子来说,假设执行rollback,那么对应的流程应该是这样:
通过undo no=3的日志把id=2的数据删除
通过undo no=2的日志把id=1的数据的deletemark还原成0
通过undo no=1的日志把id=1的数据的name还原成Tom
通过undo no=0的日志把id=1的数据删除
4. undo log的删除
针对于insert undo log
因为insert操作的记录,只对事务本身可见,对其他事务不可见。故该undo log可以在事务提交后直接删除,不需要进行purge操作。
针对于update undo log
该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。