注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。
示例 1:
输入: s = “anagram”, t = “nagaram”
输出: true
示例 2:
输入: s = “rat”, t = “car”
输出: false
提示:
1 <= s.length, t.length <= 5 * 104
s 和 t 仅包含小写字母
进阶: 如果输入字符串包含 unicode 字符怎么办?你能否调整你的解法来应对这种情况?
class Solution {
public:
bool isAnagram(string s, string t) {
unordered_map map;
for(auto c:s) map[c]++;
for(auto c:t)
{
if(!map.count(c)) return false;
else
{
map[c]--;
if(map[c]==0) map.erase(c);
}
}
return map.size()==0;
}
};
示例 1:
输入:nums1 = [1,2,2,1], nums2 = [2,2]
输出:[2]
示例 2:
输入:nums1 = [4,9,5], nums2 = [9,4,9,8,4]
输出:[9,4]
解释:[4,9] 也是可通过的
提示:
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 1000
class Solution {
public:
vector intersection(vector& nums1, vector& nums2) {
vector res;
unordered_map map;
for(auto c:nums1) map[c]++;
for(auto c:nums2)
{
if(!map.count(c)) continue;
else
{
res.push_back(c);
map.erase(c);
}
}
return res;
}
};
「快乐数」 定义为:
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n 是 快乐数 就返回 true ;不是,则返回 false 。
示例 1:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:
输入:n = 2
输出:false
提示:
1 <= n <= 231 - 1
class Solution {
public:
bool isHappy(int n) {
unordered_set memo;
int sum=0;
while(1)
{
sum=0;
while(n)
{
sum+=(n%10)*(n%10);
n=n/10;
}
n=sum;
if(sum==1) return true;
if(memo.find(sum)!=memo.end()) return false;
else memo.insert(sum);
}
return true;
}
};
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案
进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?
class Solution {
public:
vector twoSum(vector& nums, int target) {
unordered_map map;
for(int i=0;i