- 通用AI Agent的进化图谱:架构革新与安全可控的双重突破——以Manus为范本的启示
我也秃了
人工智能架构安全
通用AIAgent的进化路径:架构创新与安全管控的双重突破引言近年来,AI智能体正经历前所未有的变革。2025年3月,中国团队Monica推出的全球首款通用AIAgent——Manus,以“全链路自主执行”为核心,通过多签名系统架构和渐进式任务执行引擎,实现了从“生成建议”到“自主闭环交付任务”的范式跃迁。具体而言,Manus通过规划(Planner)-执行(Executor)-验证(Verifi
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- MySQL 8.0新特性深度解析:窗口函数与JSON数据处理的10大技巧
墨瑾轩
一起学学数据库【一】mysqljson
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣第1章:MySQL8.0简介嗨,亲爱的小伙伴们!欢迎来到MySQL8.0的奇妙世界,这里充满了新鲜和惊喜。MySQL8.0是一个数据库界的超级英雄,它带着一系列令人兴奋的新特性,比如窗口函数和JSON数据处理,来拯救我们的数据处理任务。1.1MySQL8.0的
- k8s学习笔记(3)--- kubernetes核心技术概念
梦谜
k8s基础知识k8基本核心概念
kubernetes核心技术概念1.容器(Container)2.API对象3.集群(Cluster)4.Master5.Node6.Pod7.复制控制器(ReplicationController,RC)8.副本集(ReplicaSet,RS)9.部署(Deployment)10.服务(Service)11.任务(Job)12.定时任务(CronJob)13.后台支撑服务集(DaemonSet)
- linux渲染农场大连教程,Deadline 渲染农场搭建记录
温柔彭于晏
linux渲染农场大连教程
渲染农场的工作模式:多台机器组建集群进行渲染,比如:集群中有2台渲染机器A和B,服务器会同时分配给A和B任务,A渲染第一帧,B渲染第二帧,当A完成那么服务器会继续分配第三帧,同样B服务器完成以后服务器分配第四帧,以此类推。渲染农场分服务端和节点,服务器端也可以加入集群中当做节点,当然节点也可以提交渲染任务建议:服务器端单独安装,主要插件及自定义修改内容可单独存放,当多节点接入或大批量渲染任务上传时
- P2P下载器项目
我的sun&shine
项目
1.项目介绍该项目完成一个在局域网中进行附近文件共享下载功能的工具;能够进行搜索匹配局域网中运行工具的主机;获取到局域网在线主机列表;能够获取指定主机所共享的文件信息列表(指定的共享目录下的文件信息);能够对指定主机上的指定文件进行多进程分块下载来提高传输效率。2.项目使用的技术Socket套接字编程(了解最基本线程池版本任务处理的tcp服务端程序)HTTP协议格式(了解最基本的http服务器中数
- Shell 脚本:自动化运维的利器
Waitccy
linux服务器运维
Shell脚本:自动化运维的利器一、引言在计算机的世界里,效率就是一切。当我们需要频繁执行一系列命令时,手动输入不仅繁琐,还容易出错。Shell脚本就是为解决这类问题而生的强大工具。它允许用户将一系列的命令组合在一起,形成一个可执行的脚本文件,从而实现自动化任务,提高工作效率。无论是系统管理员进行服务器维护,还是开发者进行项目部署,Shell脚本都发挥着重要的作用。本文将详细介绍Shell脚本的基
- STM32八股【2】-----ARM架构
Invinciblenuonuo
stm32arm开发架构
1、架构包含哪几部分内容寄存器处理模式流水线MMU指令集中断FPU总线架构2、以STM32为例进行介绍2.1寄存器寄存器名称作用R0-R3通用寄存器用于数据传递、计算及函数参数传递;R0也用于存储函数返回值。R4-R12通用寄存器用于存储局部变量,减少频繁的内存访问。R13栈指针(SP)指向当前栈顶,负责管理栈操作。分为主栈指针(MSP)和进程栈指针(PSP):系统中断处理和普通任务可以使用不同的
- 简单理解机器学习中top_k、top_p、temperature三个参数的作用
无级程序员
机器学习人工智能
在机器学习中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。然而,网上文章很多很全,但大多晦涩难懂,今天我们来用最简单的语言谈谈它们的具体作用:1.点菜式筛选法:top_k参数英文全称:top-k中文名称:前k个具体意义:top_k参数就像是你在餐厅点菜时,服务员只给你推荐菜单上前k名的招牌菜。在AI文本生成中,top_k参
- Python 应用部署云端实战指南 —— AWS、Google Cloud 与 Azure 全解析
清水白石008
pythonPython题库pythonawsazure
Python应用部署云端实战指南——AWS、GoogleCloud与Azure全解析在当下云计算飞速发展的时代,将Python应用部署到云平台已成为大多数开发者和企业的首选。无论是构建Web服务、API接口,还是自动化任务调度,云平台都能为我们提供高可靠性、弹性伸缩与简便管理的优势。本文将详细阐述如何将Python应用分别部署到AWS、GoogleCloud与Azure,并介绍各平台下涉及的部署工
- 《Python实战进阶》No28: 使用 Paramiko 实现远程服务器管理
带娃的IT创业者
Python实战进阶python服务器开发语言
No28:使用Paramiko实现远程服务器管理摘要在现代开发与运维中,远程服务器管理是必不可少的一环。通过SSH协议,我们可以安全地连接到远程服务器并执行各种操作。Python的Paramiko模块是一个强大的工具,能够帮助我们实现自动化任务,如代码部署、批量命令执行和文件传输。本集将深入讲解Paramiko的核心功能,并通过实战案例展示如何高效管理远程服务器。核心概念和知识点SSH协议的基本原
- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- OpenManus 架构的详细技术实现
大势下的牛马
搭建本地gpt架构OpenManusManusAgent
一、OpenManus架构的详细技术实现1.核心分层架构的深度解析底层:LLM层模型选择与适配:OpenManus允许用户替换底层LLM(如mPLUG-Owl3、Qwen、Llama等),通过统一接口调用模型API,实现跨模型兼容性Prompt工程设计:用户输入的自然语言指令通过精心设计的Prompt转换为结构化指令。例如,PlanningTool使用预定义的Prompt模板(如请将任务分解为可执
- 蓝桥杯2024年第十五届省赛真题-魔法巡游(Python)
罄竹_
python刷题python蓝桥杯算法
前言本文参考了FJ_EYoungOneC的文章思路,并且修改了该文章的某些理解上的偏差。一、题目题目来源:dotcpp题目描述在蓝桥王国中,两位魔法使者,小蓝与小桥,肩负着维护时空秩序的使命。他们每人分别持有N个符文石,这些石头被赋予了强大的力量,每一块上都刻有一个介于1到109之间的数字符号。小蓝的符文石集合标记为s1,s2,...,sN,小桥的则为t1,t2,...,tN。两位魔法使者的任务是
- 想使用dify实现docx文档的自动生成?试了一圈,感觉还是根据python-docx更靠谱
几道之旅
人工智能智能体及数字员工人工智能
前言:文档自动生成的需求痛点在软件开发过程中,需求文档、设计文档等材料的编写是每个开发者都绕不开的工作。最近笔者接到一个需要批量生成标准化需求文档的任务,尝试了目前热门的低代码工具Dify后,发现对于稍微复杂格式的文档生成需求(例如文本居中这么简单的需求),最终还是回归到基于python-docx库的解决方案。本文将分享两种技术路线的对比实践。一、Dify的踩坑经历我尝试了markdown转doc
- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- Kaop打印项之OFD(国标版式文件)
天蓝加点盐
Web打印控件Kaop前端javascripthtml
OFD功能说明实现OFD文件的打印,详细参见属性列表属性列表属性名类型默认值说明nameString“”打印项的名称,在打印任务内应该唯一。labelString“”打印项的标题,打印设计或维护时,可以更好的了解打印项代表的含义。xString0左边缘相对于打印区域的位置,默认单位毫米(mm),可用单位:毫米-mm,如:“10mm”厘米-cm,如:“1cm”点-pt,如:“16pt”英寸-in,如
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 未来已来,把握机会,从DBA到DBA²⓵不幸的DBA各有各的不幸
梁敬彬
AIdba数据库
引言老马是某大公司的资深DBA,某天公司忽然通知裁员,他和徒弟阿牛双双被解雇。半年过去,老马仍未找到工作,而阿牛虽说找到新东家,却只能接受薪资减半的现实。阿牛的同学大黄,同为DBA,虽未经历裁员风波,却因繁重的工作任务倍感压力,老板不但不肯再招人,还对他的表现颇有不满。新人小羊,则因在工作中频频犯错,被公司以低绩效为由辞退。他们都对自己的未来感到迷茫、慌张。⓵不幸的DBA各有各的不幸老马:我现在真
- OpenAI Deep Research 要 200 美元/月?试试这 4 款免费开源平替!
surfirst
LLM人工智能开源DeepResearch
引言随着AI研究代理(AIresearchagents)的兴起,越来越多的工具能够帮助用户快速获取信息、整理研究报告。OpenAI最近推出的DeepResearch便是一个典型代表,它能在几十分钟内完成原本需要人类数小时的多步骤研究任务。然而,DeepResearch并非唯一的选择,开源社区也提供了多个优秀的替代方案。如果你希望使用开源方案、获得更强的可定制性,或者避免依赖OpenAI,那么本文介
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- 文章去除AI味的指令
wirepuller_king
AIword技巧人工智能
去AI味指令-1Role:AI文章人性化优化专家Profile:author:wirepullerVersion:5.2.0Language:中文Description:专门优化AI生成文章,使其更接近人类自然写作风格的专家Background:你是一位精通自然语言处理和人类写作风格的专家。你的任务是将AI生成的文章转化为更自然、更有人情味的文章,去除机械化和公式化的痕迹,增加文章的可读性和亲和力
- anythingLLM 使用教程
惟贤箬溪
穷玩AiAIGC人工智能
一、anythingLLM简介anythingLLM是一款灵活且功能强大的语言模型,它基于先进的深度学习架构构建,旨在为用户提供多样化的自然语言处理服务。其设计理念注重通用性和可扩展性,能够适应多种领域和任务,无论是文本生成、智能问答,还是翻译、摘要提取等,都能展现出出色的性能。与同类模型相比,anythingLLM具有训练数据丰富、模型优化程度高的优势,能够生成更符合逻辑、更具实用性的文本内容。
- GitHub项目推荐--基于LLM的开源爬虫项目
惟贤箬溪
穷玩Aigithub爬虫
以下是一些基于大语言模型(LLM,LargeLanguageModel)的开源爬虫项目,它们结合了自然语言处理(NLP)技术与爬虫的功能,能在一定程度上提升爬取的智能化和精度。这些项目可以用于自动化抓取、内容提取、数据分析等任务。1.GPT-3WebScraper简介:这是一个基于OpenAIGPT-3模型的网页抓取工具,利用GPT-3的自然语言理解能力来生成有用的爬虫策略、处理网页内容并提取有价
- 纪念品分组
oziang20120318
c++
题目描述元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品,并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。输入描述输入文件名:gift.i
- 回归任务训练--MNIST全连接神经网络(Mnist_NN)
豆芽819
深度学习框架PyTorchpytorch深度学习人工智能机器学习回归
importtorchimportnumpyasnpimportloggingfromtorch.utils.dataimportTensorDataset,DataLoaderfromtorch.utils.dataimportDataLoader#配置日志logging.basicConfig(level=logging.INFO,format='%(asctime)s-%(levelname
- LLM-Agent方法评估与效果分析
agent人工智能ai开发
1.引言近年来,随着大型语言模型(LLM)的快速发展,基于强化学习(RL)对LLM进行微调以使其具备代理(Agent)能力成为研究热点。从基础的单智能体强化学习算法(如PPO)到多智能体协作、语料重组以及在线自学习等新技术不断涌现,研究人员致力于探索如何提高LLM在实际应用中的决策能力、推理能力和任务执行效率。本文主要聚焦于当前LLM-Agent方法的检索与评估,旨在全面探讨各类方法的技术实现、实
- MQ总结
java
一.如何实现消息可靠性1.发送到MQ失败,重试策略2.生产者确认机制Confirm机制每个消息都有自己的一个Confirm机制消息正确到达交换机,返回ack。未到达交换机,返回nack。Return机制消息未正确到达队列,此时会通过PublisherConfirm返回ack,会通过PublisherReturn回调方法返回异常信息。全局只有一个失败后把消息写入数据库表,后期通过定时任务扫描,再次发
- 前端面试:[React] scheduler 调度机制原理?
returnShitBoy
前端react.jsjavascript
ReactScheduler是React16.8引入的一种调度机制,旨在对高效渲染和复杂应用程序的性能进行优化。它允许React在空闲时间进行渲染,优先处理对用户体验最为重要的任务。以下是Scheduler调度机制的原理,以及它在实际工作中如何帮助管理渲染。1.调度机制的背景React的渲染过程可能会受到多个因素的影响,例如用户输入、网络请求以及其他状态变化。传统的渲染机制在某些情况下可能导致性能
- 全网最细!CentOS 7极速部署MySQL 8.0.23实战手册(附最佳参数模版)
从不删库的DBA
Mysqlcentosmysqllinux
一、部署前准备1.1环境检查清单在进行MySQL部署前,请确认以下基础条件已满足:检查项标准要求操作系统版本CentOS6/7(推荐7.6+)内存建议≥4GB(生产环境≥16GB)磁盘空间/分区≥30GB,数据盘按需求规划网络连通性确保yum源可访问二、操作系统基础配置2.1关闭网络管理服务根据系统版本选择相应操作:▶CentOS6#serviceNetworkManagerstop停止Netwo
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D