比如 GC 的时候必须要等到 Java 线程都进入到 safepoint 的时候 VMThread 才能开始执行 GC,
先标记,标记完毕之后再清除,效率不高,会产生碎片
**复制算法:**分为 8:1 的 Eden 区和 survivor 区,就是上面谈到的 YGC
**标记整理:**标记完毕之后,让所有存活的对象向一端移动
**并行收集器:**串行收集器使用一个单独的线程进行收集,GC 时服务有停顿时间
**串行收集器:**次要回收中使用多线程来执行
CMS 收集器是基于“标记—清除”算法实现的,经过多次标记才会被清除
G1 从整体来看是基于**“标记—整理”**算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的
新生代内存不够用时候发生 MGC 也叫 YGC,JVM 内存不够的时候发生 FGC
jstack 可以看当前栈的情况,jmap 查看内存,jhat 进行 dump 堆的信息
mat(eclipse 的也要了解一下)
加载、验证、准备、解析、初始化。然后是使用和卸载了
通过全限定名来加载生成 class 对象到内存中,然后进行验证这个 class 文件,包括文件格式校验、元数据验证,字节码校验等。准备是对这个对象分配内存。解析是将符号引用转化为直接引用(指针引用),初始化就是开始执行构造器的代码
java 虚拟机主要分为以下一个区:
方法区:
虚拟机栈:
虚拟机栈也就是我们平常所称的栈内存,它为 java 方法服务,每个方法在执行的时候都会创建一个栈帧,用于存储局部变量表、操作数栈、动态链接和方法出口等信息。
虚拟机栈是线程私有的,它的生命周期与线程相同。
局部变量表里存储的是基本数据类型、returnAddress 类型(指向一条字节码指令的地址)和对象引用,这个对象引用有可能是指向对象起始地址的一个指针,也有可能是代表对象的句柄或者与对象相关联的位置。局部变量所需的内存空间在编译器间确定
4.操作数栈的作用主要用来存储运算结果以及运算的操作数,它不同于局部变量表通过索引来访问,而是压栈和出栈的方式
5.每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接.动态链接就是将常量池中的符号引用在运行期转化为直接引用。
本地方法栈
本地方法栈和虚拟机栈类似,只不过本地方法栈为 Native 方法服务。
堆
java 堆是所有线程所共享的一块内存,在虚拟机启动时创建,几乎所有的对象实例都在这里创建,因此该区域经常发生垃圾回收操作。
程序计数器
内存空间小,字节码解释器工作时通过改变这个计数值可以选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理和线程恢复等功能都需要依赖这个计数器完成。该内存区域是唯一一个 java 虚拟机规范没有规定任何 OOM 情况的区域。
法)
判断一个对象是否存活有两种方法:
1. 引用计数法
所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用,也就是“死对象”,将会被垃圾回收。
引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象 A 引用对象 B,对象B 又引用者对象 A,那么此时 A,B 对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流的虚拟机都没有采用这种算法。
2.可达性算法(引用链法)
该算法的思想是:从一个被称为 GC Roots 的对象开始向下搜索,如果一个对象到 GC Roots 没有任何引用链相连时,则说明此对象不可用。
在 java 中可以作为 GC Roots 的对象有以下几种:
虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象比不一定会被回收。当一个对象不可达 GC Root 时,这个对象并不会立马被回收,而是出于一个死缓的阶段,若要被真正的回收需要经历两次标记如果对象在可达性分析中没有与 GC Root 的引用链,那么此时就会被第一次标记并且进行一次筛选,筛选的条件是是否有必要执行 finalize()方法。当对象没有覆盖 finalize()方法或者已被虚拟机调用过,那么就认为是没必要的。
如果该对象有必要执行 finalize()方法,那么这个对象将会放在一个称为 F-Queue 的对队列中,虚拟机会触发一个 Finalize()线程去执行,此线程是低优先级的,并且虚拟机不会承诺一直等待它运行完,这是因为如果 finalize()执行缓慢或者发生了死锁,那么就会造成 F-Queue 队列一直等待,造成了内存回收系统的崩溃。GC 对处于 F-Queue 中的对象进行第二次被标记,这时,该对象将被移除”即将回收”集合,等待回收。
在 java 中,程序员是不需要显示的去释放一个对象的内存的,而是由虚拟机自行执行。在JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,扫面那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。
1. 标记-清除:
这是垃圾收集算法中最基础的,根据名字就可以知道,它的思想就是标记哪些要被回收的对象,然后统一回收。这种方法很简单,但是会有两个主要问题:
1)效率不高,标记和清除的效率都很低;
2)会产生大量不连续的内存碎片,导致以后程序在分配较大的对象时,由于没有充足的连续内存而提前触发一次 GC 动作。
2. 复制算法:
为了解决效率问题,复制算法将可用内存按容量划分为相等的两部分,然后每次只使用其中的一块,当一块内存用完时,就将还存活的对象复制到第二块内存上,然后一次性清楚完第一块内存,再将第二块上的对象复制到第一块。但是这种方式,内存的代价太高,每次基本上都要浪费一般的内存。
于是将该算法进行了改进,内存区域不再是按照 1:1 去划分,而是将内存划分为8:1:1 三部分,较大那份内存交 Eden 区,其余是两块较小的内存区叫 Survior 区。每次都会优先使用 Eden 区,若 Eden 区满,就将对象复制到第二块内存区上,然后清除 Eden 区,如果此时存活的对象太多,以至于 Survivor 不够时,会将这些对象通过分配担保机制复制到老年代中。(java 堆又分为新生代和老年代)
3. 标记-整理:
该算法主要是为了解决标记-清除,产生大量内存碎片的问题;当对象存活率较高时,也解决了复制算法的效率问题。它的不同之处就是在清除对象的时候现将可回收对象移动到一端,然后清除掉端边界以外的对象,这样就不会产生内存碎片了。
4. 分代收集:
现在的虚拟机垃圾收集大多采用这种方式,它根据对象的生存周期,将堆分为新生代和老年代。在新生代中,由于对象生存期短,每次回收都会有大量对象死去,那么这时就采用复制算法。老年代里的对象存活率较高,没有额外的空间进行分配担保,所以可以使用标记-整理 或者 标记-清除。
java 内存模型(JMM)是线程间通信的控制机制.JMM 定义了主内存和线程之间抽象关系。
线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM 的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。
Java 内存模型的抽象示意图如下:
从上图来看,线程 A 与线程 B 之间如要通信的话,必须要经历下面 2 个步骤:
首先,线程 A 把本地内存 A 中更新过的共享变量刷新到主内存中去。
然后,线程 B 到主内存中去读取线程 A 之前已更新过的共享变量。
java 类加载需要经历一下 7 个过程:
加载
加载时类加载的第一个过程,在这个阶段,将完成一下三件事情:
验证
验证的目的是为了确保 Class 文件的字节流中的信息不回危害到虚拟机.在该阶段主要完成以下四钟验证:
《Android学习笔记总结+最新移动架构视频+大厂安卓面试真题+项目实战源码讲义》
【docs.qq.com/doc/DSkNLaERkbnFoS0ZF】 完整资料开源分享
版本号是否在当前虚拟机范围内,常量池中的常量是否有不被支持的类型。
2. 元数据验证:对字节码描述的信息进行语义分析,如这个类是否有父类,是否集成了不被继承的类等。
3. 字节码验证:是整个验证过程中最复杂的一个阶段,通过验证数据流和控制流的分析,确定程序语义是否正确,主要针对方法体的验证。如:方法中的类型转换是否正确,跳转指令是否正确等。
4. 符号引用验证:这个动作在后面的解析过程中发生,主要是为了确保解析动作能正确执行。
准备
准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象一起分配在 Java 堆中。
public static int value=123;
//在准备阶段 value 初始值为 0 。在初始化阶段才会变为 123 。
解析
该阶段主要完成符号引用到直接引用的转换动作。解析动作并不一定在初始化动作完成之前,也有可能在初始化之后。
对于很多初中级Android工程师而言,想要提升技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。整理的这些架构技术希望对Android开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
同时我经过多年的收藏目前也算收集到了一套完整的学习资料以及高清详细的Android架构进阶学习导图及笔记分享给大家,希望对想成为架构师的朋友有一定的参考和帮助。
下面是部分资料截图,诚意满满:特别适合有开发经验的Android程序员们学习。
不论遇到什么困难,都不应该成为我们放弃的理由!
如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言,一定会认真查询,修正不足,谢谢。
师的朋友有一定的参考和帮助。
下面是部分资料截图,诚意满满:特别适合有开发经验的Android程序员们学习。
[外链图片转存中…(img-c41iurAe-1640923451265)]
不论遇到什么困难,都不应该成为我们放弃的理由!
如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言,一定会认真查询,修正不足,谢谢。
本文已被CODING开源项目:《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》收录