- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- python profile_python程序之profile分析
操作系统:CentOS7.3.1611_x64python版本:2.7.5问题描述1、Python开发的程序在使用过程中很慢,想确定下是哪段代码比较慢;2、Python开发的程序在使用过程中占用内存很大,想确定下是哪段代码引起的;解决方案使用profile分析分析cpu使用情况可以使用profile和cProfile对python程序进行分析,这里主要记录下cProfile的使用,profile参
- 产品经理高效工作指南,核心能力全拆解!
AI大模型-大飞
产品经理人工智能大数据智能体程序员大模型大模型学习
在互联网行业的激烈竞争中,产品经理作为产品的“操盘手”,其工作流程的科学性与专业性直接决定着产品的成败。想要高效推进产品从0到1、实现从1到N的迭代,必须吃透日常工作的每个环节。今天,我们就用思维导图为你拆解产品经理9大核心工作流程,从需求到迭代全链路解析,助力你成为更专业的PM!一、需求分析与市场调研:产品的“方向盘”需求分析是产品工作的起点,决定着产品是否贴合市场。市场调研:定期研究行业动态(
- 养老机构运营实训室建设要点:构建实战化运营管理实训体系
凯禾瑞华_实训室建设
实训室建设大数据物联网智慧健康养老服务与管理虚拟仿真教学人工智能智慧养老
养老机构运营实训室作为养老服务人才培养的重要载体,其建设质量直接影响专业人才的实践能力与行业适配度。围绕实战化运营管理实训体系的构建目标,需从多维度精准把握建设要点,打造契合行业需求的实训环境。点击获取实训室建设方案一、明确建设目标与定位(一)贴合行业需求养老机构运营实训室建设要点的核心,在于精准对接养老行业发展趋势与实际需求。随着老龄化社会加速,养老服务精细化、智慧化需求激增,实训室应锚定培养具
- Python知识点:如何使用memory_profiler进行内存分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用memory_profiler进行Python代码内存分析在开发高性能的Python应用程序时,理解和优化内存使用是至关重要的。memory_profiler是一个强大的工具,它可以帮助你监控Python代码的内存使用情况。本文将介绍如何使用memory_profiler来分
- Python 数据分析实践:车辆行驶数据处理心得
lzzy-lt-0415
python数据分析开发语言
在数据驱动决策的大趋势下,Python凭借其丰富的数据分析库,成为处理各类数据的得力工具。近期我围绕车辆行驶数据展开分析,过程中收获诸多实战经验,在此分享用Python进行数据处理与分析的心得,也结合代码讲讲实际运用思路。一、数据导入与初步探索:开启分析第一步importpandasaspd#导入数据df=pd.read_excel(r'../../数据层/数据集合/车辆行驶记录表单2.xlsx'
- SOC的工作原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!SOC(安全运营中心)是企业安全防御体系的**神经中枢**,通过整合技术、流程和人员,实现**7×24小时安全监控、威胁检测、事件响应及持续改进**。其核心目标是**缩短攻击驻留时间(MTTD/MTTR)**,将碎片化的安全数据转化为可行动的防御策略。以下是SOC的工作原理与架构深度解析:---###**一、SOC的核心工作原理**####**1.安全数据全域
- Abaqus许可价格高,项目组如何合理调度资源?
在大型制造企业、科研机构或工程服务公司中,Abaqus已成为结构非线性分析与多物理场仿真的首选平台之一。它能够处理复杂接触、塑性变形、大变形、断裂、复合材料等高难度问题,尤其适合航空航天、汽车碰撞、精密工程等领域的计算模拟。但同时,Abaqus的模块价格昂贵、资源调度复杂,特别是在多个项目组并行使用的环境下,频繁出现:仿真任务排队、许可冲突;模块占用严重、使用不透明;项目间“抢资源”,效率低下;如
- Gemini CLI 工具注册系统深度解析:从动态发现到智能执行的完整架构
前言在探索了GeminiCLI的配置系统、扩展机制和构建流程后,今天我们将深入项目的核心——工具注册系统。这个系统位于tools目录,是整个AI工具生态的神经中枢。通过对tool-registry.ts和tools.ts的深入分析,我们可以看到一个插件化工具架构¹的完整实现。注解1-插件化工具架构:不同于传统的硬编码工具集合,GeminiCLI采用了完全插件化的工具架构。系统能够动态发现、注册和执
- 10.2 ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt人工智能机器学习语言模型
ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍使用ChatGPT自动设计生成训练数据的Prompt在大模型微调场景中,高质量训练数据的获取往往是制约模型效果的核心瓶颈。根据2023年GoogleResearch的实证研究,使用GPT-4生成的合成数据对LLaMA2进行微调,能达到人工标注数据85%的效果水平。本章将揭秘如何通过ChatGPT自动生成适配ChatGLM3的微调数据。一、
- 项目管理中,范围管理和需求管理有什么区别
易成技术团队
即时通讯工具
范围管理与需求管理在项目管理中存在以下五大核心区别:1、关注层级不同、2、管理目标不同、3、输出成果不同、4、涉及角色不同、5、所用工具与流程不同。其中,“关注层级不同”是二者的根本分野。需求管理聚焦于收集和分析利益相关者的真实需求,回答“用户想要什么”;而范围管理则是在项目层面明确要交付的全部工作,回答“我们做什么、不做什么”。这种层级差异决定了需求是制定范围的输入源,范围是实现需求的边界框架,
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 马尔可夫链:随机过程的记忆法则与演化密码
大千AI助手
人工智能Python#OTHERpython人工智能马尔科夫链MC算法随机过程
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义:无记忆的随机演化马尔可夫链(MarkovChain)是一种具有马尔可夫性质的离散随机过程,其核心特征是:未来状态仅取决于当前状态,与历史路径无关数学表述:[P(Xt+1=xt+1∣Xt=xt,Xt−1=xt−1,…,X0=x0)=P(Xt
- 从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
许泽宇的技术分享
知识图谱科技人工智能
一句话摘要:本文带你用现代NLP和知识图谱技术,把科技公司并购新闻变成结构化的知识大脑,过程全景揭秘,理论与实战齐飞,代码只用伪代码,干货与段子齐发,助你成为AI知识工程老司机!前言:为什么要把新闻变成知识图谱?想象一下,你是个投资分析师,老板让你一周内梳理全球科技并购大事件,找出谁在买谁、花了多少钱、背后有哪些大佬、涉及哪些新技术……你会怎么做?A.手动Ctrl+F,Excel狂敲,熬夜爆肝?B
- 模块三:现代C++工程实践(4篇)第一篇《C++模块化开发:从Header-only到CMake模块化》
AI迅剑
c++开发语言cmake
引言:现代C++工程化的核心挑战(终极扩展版)在云计算与物联网时代,C++项目规模呈指数级增长。传统Header-only开发模式暴露出编译效率低下、依赖管理混乱、版本冲突频发等致命问题。本文通过CMake3.22+Conan2.0工具链的深度集成,结合5个真实工业案例和200+行配置代码,系统阐述:Header-only库的模块化改造(含性能数据、内存分析)CMake高级配置技巧(目标属性、接口
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- 用mysql作excel数据分析_怎样用 Excel 做数据分析?
一只帅鸟
基本Excel快捷键【最好用的复制命令】Ctrl+R向右复制Ctrl+D向下复制【选择格式粘贴】Ctrl+Alt+V【求和功能】Alt+=然后按回车键【格式调整】Ctrl+Shift+7加上外边框Ctrl+Shift+-去掉边框Ctrl+Shift+5改成%数值格式【视图调整及编辑】Ctrl+Shift+=插入行Ctrl+-删除【终极】开始工具栏所有的命令都可以通过Alt-H-调用(如下图键入相应
- Docker 容器间通信:Link 与自定义网络
Docker容器间通信:Link与自定义网络关键词:Docker容器通信、容器网络模型、DockerLink、自定义网络、Bridge网络、Overlay网络、网络驱动摘要:本文深入解析Docker容器间通信的两种核心方式——传统Link机制与现代自定义网络方案。通过对比分析两者的技术原理、实现方式、适用场景及最佳实践,帮助读者理解Docker网络架构的演进逻辑。文章从容器网络基础概念出发,详细阐
- Coze智能体开发:什么是提示词及其编写建议
王国平
CozeAIAgent智能体开发人工智能大数据语言模型python开发语言
提示词(Prompt)是AIAgent的核心,它决定了模型生成结果的质量和准确性。提示词不仅影响输出,还决定了模型对输入信息的理解深度。通过科学的提示词设计,开发者能高效引导模型生成符合预期的高质量输出。基础概念提示词提示词(Prompt)是用户在与模型或智能系统互动时输入的指令或文本,用来引导系统生成回应或执行特定任务。它可以是问题、命令或描述性文字,帮助系统理解用户的意图并提供相应的结果。提示
- Spring Boot 牵手EasyExcel:解锁高效数据处理姿势
灵犀学长
SpringBoot全栈开发springbootjava架构微服务后端
引言在日常的Java开发中,处理Excel文件是一个极为常见的需求。无论是数据的导入导出,还是报表的生成,Excel都扮演着重要的角色。例如,在企业的财务管理系统中,需要将每月的财务数据导出为Excel报表,方便财务人员进行数据分析和审计;在人力资源管理系统中,可能需要导入员工的基本信息、考勤记录等数据到系统中。然而,传统的Excel处理方式,如使用POI等工具,虽然功能强大,但在面对复杂的业务场
- Linux: perf: debug问题一例,cpu使用率上升大约2%;多线程如何细化cpu及perf数据分析
mzhan017
kernel系统性能linux服务器网络
文章目录前提面临的问题内核级别函数的差别继续debug总结根据pid前提一个进程安置在一个CPU上,新功能上线之后,固定量的业务打起来,占用的CPU是42%。之前没有新功能的情况下,CPU占用是40%。差了大约2%。而且这个进程里的线程数非常多,有50多个线程。从差距看变化不大,没有别的办法,只能使用perf来抓取数据来看。但是使用perf也要面临很多的问题。面临的问题面临的问题有一堆:两次per
- SVG格式深度解析与Path应用实战:从原理到企业级全场景开发(实战版)
一、简介在数字图形领域,SVG(ScalableVectorGraphics)凭借其矢量特性、可编辑性和交互能力,成为现代设计和开发的核心工具。本文将从SVG的基础原理出发,深入解析其技术特性,并与主流图像格式(如JPEG、PNG、PLT等)进行对比分析。通过企业级应用案例,结合代码示例和Mermaid图表,帮助开发者全面掌握SVG的应用场景与开发技巧,实现从零到一的高效实践。二、SVG格式的核心
- Python报错信息归类以及处理
ʕᵔᴥᵔʔPython的错误和异常可以分为多个类别,了解这些类别有助于更好地调试和处理错误。以下是Python中常见报错信息的归类和分析。1.语法错误(SyntaxError)在代码执行前被解析器捕获的错误,通常是由于代码不符合Python语法规则。常见子类:IndentationError:缩进错误TabError:Tab和空格混用示例:#缺少冒号ifTrueprint("Hello")#Syn
- 深入理解数据库领域的 SQL 索引失效问题
数据库管理艺术
数据库sqlai
深入理解数据库领域的SQL索引失效问题关键词:SQL索引、索引失效、查询优化、执行计划、数据库性能、B+树、索引选择性摘要:本文深入探讨SQL索引失效的核心问题,分析导致索引失效的8种典型场景及其背后的原理机制。通过B+树索引结构解析、执行计划解读和实际案例演示,帮助开发者全面理解索引失效的本质原因。文章提供详细的优化方案和最佳实践,包括索引设计原则、SQL编写规范以及性能调优技巧,并附有MySQ
- 搜索领域SEO进阶:内容优化与用户体验提升
搜索引擎技术
uxai
搜索领域SEO进阶:从关键词堆砌到用户价值——内容优化与体验升级的实战指南关键词SEO进阶、内容质量、用户体验、E-E-A-T、用户行为信号、结构化数据、页面速度优化摘要当“SEO=关键词堆砌”的时代成为历史,当搜索引擎算法从“识别文字”进化到“理解意图”,SEO从业者正面临一场从“技术投机”到“用户价值”的范式转移。本文将深度拆解搜索领域的进阶策略:从内容优化的核心逻辑(E-E-A-T框架、主题
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- 2023年搜索领域的技术认证与职业发展指南
搜索引擎技术
搜索引擎ai
2023年搜索领域的技术认证与职业发展指南关键词搜索领域、技术认证、职业发展、搜索引擎技术、人工智能搜索摘要本指南旨在为搜索领域的从业者和有志于进入该领域的人士提供全面的技术认证与职业发展参考。首先介绍搜索领域的概念基础,包括其历史发展和关键问题。接着阐述相关理论框架,分析不同认证背后的原理。架构设计部分展示搜索系统的组成与交互。实现机制探讨算法复杂度和代码优化。实际应用部分给出实施和部署策略。高
- LRU缓存算法在搜索引擎中的应用
数据结构与算法学习
缓存算法搜索引擎ai
LRU缓存算法在搜索引擎中的应用关键词:LRU算法、缓存淘汰、搜索引擎、哈希表、双向链表、性能优化、访问频率摘要:本文深入探讨了LRU(最近最少使用)缓存算法在搜索引擎中的关键应用。我们将从基本概念出发,通过生活化的比喻解释LRU的工作原理,分析其在搜索引擎架构中的具体实现方式,并通过Python代码示例展示如何构建一个高效的LRU缓存系统。文章还将讨论LRU算法的数学建模、实际应用场景以及未来发
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- React.js在前端移动端开发中的应用
大厂前端小白菜
前端react.js前端框架ai
React.js在前端移动端开发中的应用关键词:React.js、移动端开发、跨平台、组件化、性能优化、ReactNative、PWA摘要:本文将深入探讨React.js在移动端开发中的应用场景和技术实现。从React的核心特性出发,分析其在移动端的优势,详细介绍ReactNative的工作原理,并通过实际案例展示如何构建高性能的移动应用。文章还将对比不同移动端开发方案,提供性能优化建议,并展望R
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理