让你Python到很爽的加速递归函数的装饰器

Python技巧——好用的一个装饰器

今天我们会讲到一个装饰器

注记:链接“装饰器”指向廖雪峰老师的Python3教程中的装饰器教程。可以在这里快速了解什么是装饰器。

@functools.lru_cache——进行函数执行结果备忘,显著提升递归函数执行时间。

示例:寻找宝藏。在一个嵌套元组tuple或列表list中寻找元素'Gold Coin'

import time
from functools import lru_cache


def find_treasure(box):
    for item in box:
        if isinstance(item, (tuple, list)):
            find_treasure(item)
        elif item == 'Gold Coin':
            print('Find the treasure!')
            return True

start = time.perf_counter()

find_treasure(('sth', 'sth', 'sth',
              ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
              ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
               'Gold Coin', ))

end = time.perf_counter()
run_time_without_cache = end - start

print('在没有Cache的情况下,运行花费了{} s。'.format(run_time_without_cache))

@lru_cache()
def find_treasure_quickly(box):
    for item in box:
        if isinstance(item, (tuple, list)):
            find_treasure(item)
        elif item == 'Gold Coin':
            print('Find the treasure!')
            return True


start = time.perf_counter()

find_treasure_quickly(('sth', 'sth', 'sth',
                      ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
                      ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
                       'Gold Coin', ))

end = time.perf_counter()
run_time_with_cache = end - start

print('在有Cache的情况下,运行花费了{} s。'.format(run_time_with_cache))

print('有Cache比没Cache快{} s。'.format(float(run_time_without_cache-run_time_with_cache)))

最终输出

Find the treasure!
在没有Cache的情况下,运行花费了0.0002182829999810565 s。
Find the treasure!
在有Cache的情况下,运行花费了0.00011638000000857573 s。
有Cache比没Cache快0.00010190299997248076 s。

注记:运行这个示例时我的电脑配置如下
CPU:AMD Ryzen 5 2600
RAM:Kingston HyperX 8Gigabytes 2666
使用7个月

这个装饰器可以在函数运行时记录它的输入值与运行结果。当元组('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth')出现第二次时,加了这个装饰器的函数find_the_treasure_quickly不会再次在递归时对这个元组进行查找,而是直接在“备忘录”中找到运行结果并返回

你可能感兴趣的:(让你Python到很爽的加速递归函数的装饰器)