CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度

 气候变化关系到农业、生态系统、社会经济和人类生存与发展,是当今世界关注的重点问题之一。IPCC(Intergovernmental Panel on Climate Change)第6次评估报告指出,自 20 世纪 50 年代以来,从全球平均气温和海温升高、大范围积雪和冰川融化,以及全球海平面的上升可知,气候变暖已是不争的事实。

      国际耦合模式比较计划进入新的阶段——第六阶段(CMIP6),这将为气候变化研究领域提供更丰富的全球气候模式数据。相比于 CMIP5,CMIP6 模式有两个主要的特点:一是 CMIP6 考虑的过程更为复杂,很多模式实现了大气化学过程的双向耦合;二是大气和海洋模式的分辨率显著提高,其中大气模式的最高水平分辨率可达到全球25km。除此,CMIP5 的 RCP 情景只考虑了未来100年达到稳定CO2浓度以及相应辐射强迫的目标,并没有针对特定的社会发展路径,而CMIP6中的新的共享社会经济路径充分考虑了这一点,提供了更加多样化的排放情景,可以对减缓适应研究以及区域气候预估提供更加合理的模拟结果,因此在很大程度上弥补了CMIP5中RCP情景的不足。

      在国际耦合模式比较计划中,GCM 为构建气候变化提供了全球大尺度的信息,但是在针对区域尺度开展气候研究时,相对较低的分辨率信息对区域气候变化预估产生较大偏差.降尺度方法在将大尺度信息转化为区域尺度上发挥着重要作用,包括动力降尺度、统计降尺度以及二者相结合的方法等。

特色:

1、原理深入浅出的讲解;   

2、技巧方法讲解,提供所有案例数据及代码;

3、与项目案例相结合讲解实现方法,对接实际工作应用 ;

4、跟学上机操作、独立完成案例操作练习、全程问题跟踪解析;

5、专属助学群辅助巩固学习及实际工作应用交流,不定期召开线上答疑;

一、CMIP6中的模式比较计划

1.1 GCM介绍

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第1张图片

1.2 相关比较计划介绍

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第2张图片 

二、数据下载

2.1方法一:手动人工

利用官方网站

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第3张图片

 2.2方法二:自动

利用Python的命令行工具

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第4张图片

 

2.3方法三:半自动购物车

利用官方网站

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第5张图片

2.4 裁剪netCDF文件

基于QGIS和CDO实现对netCDF格式裁剪

 

2.5 处理日期非365天的gcm

以BCC为例

三、基础知识

3.1 Python基础

  1. Numpy基础
  2. Scipy基础
  3. Pandas基础

3.2 CDO基本操作

CDO(Climate Data Operator)是大气科学中常用的处理工具。

  1. 文件操作
  2. 重采样
  3. 统计计算

3.3Xarray的基本操作

Xarray是基于Python体系的针对netCDF常用的工具,可以方便实现处理、可视化等操作。

  1. Netcdf文件的读写
  2. 统计计算
  3. 可视化

四、单点降尺度

4.1 Delta方法

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第6张图片

4.2统计订正

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第7张图片 

4.3机器学习方法

  1. 建立特征
  2. 建立模型
  3. 模型评估

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第8张图片

4.4多算法集成方法

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第9张图片 

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第10张图片 

五、统计方法的区域降尺度

5.1 Delta方法

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第11张图片 

5.2 基于概率订正方法的

六、基于WRF模式的动力降尺度

6.1制备CMIP6的WRF驱动数据

利用cdo工具对gcm的输出文件进行重新编码制备wrf的驱动数据

6.1.1针对压力坐标系的数据制备

6.1.2针对sigma坐标系GCM数据制备

6.1.3 WPS处理

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第12张图片

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第13张图片 

 

6.3 模式的后处理

  1. 提取变量
  2. 变量的统计
  3. 变量的可视化

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第14张图片

七、典型应用案例-气候变化1

7.1针对风速进行降尺度

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第15张图片 

7.2针对短波辐射降尺度

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第16张图片 

八、典型应用案例-气候变化2

ECA极端气候指数计算

Consecutive dry days index

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第17张图片

Consecutive frost days index per time period

 CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第18张图片

 

Consecutive summer days index per time period

 

 

Consecutive wet days index per time period

 CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第19张图片

九、典型应用案例-生态领域

预估生长季开始和结束时间

1、建立气象数据与VIPPHEN遥感物候数据中生长季开始和结束

2、在未来气候情景下预估生长季长季开始、结束和长度

十、典型应用案例-水文、生态模式数据

  1. SWAT数据制备
  2. Biome-BGC数据

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数,模拟日尺度碳、水和氮通量的模型,其研究的空间尺度可以从点尺度扩展到陆地生态系统。案例中以单点模拟方式制备CMIP6的气象数据。

CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度_第20张图片

 CMIP6:WRF模式动力降尺度、单点降尺度、统计方法区域降尺度 (qq.com)

 

 

 

你可能感兴趣的:(大数据,大气化学,大气海洋,气候)