from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import numpy as np
def myliner():
'''
线性回归直接预测房子价格
'''
#获取数据
lb=load_boston()
#分割数据集到训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(lb.data,lb.target,test_size=0.25)
#进行标准化处理,特征值和标准值都必须进行标准化处理
std_x=StandardScaler()
x_train=std_x.fit_transform(x_train)
x_test=std_x.transform(x_test)
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1,1)) #0.19版的sklearn要求传入的数组必须是二维数组
y_test = std_y.transform(y_test.reshape(-1,1))
#estimator预测
#正规方程求解方式预测结果
lr=LinearRegression()
lr.fit(x_train,y_train)
print(lr.coef_)
#预测测试集的房子价格
y_lr_predict=std_y.inverse_transform(lr.predict(x_test))
print("正规方程测试集里面每一个房子的预测价格:",y_lr_predict)
print("正规方程的均方误差:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict))
#梯度下降求解方式预测结果
sgd=SGDRegressor()
sgd.fit(x_train,y_train)
print(sgd.coef_)
#预测测试集的房子价格
y_sgd_predict=std_y.inverse_transform(sgd.predict(x_test))
print("梯度下降测试集里面每一个房子的预测价格:",y_sgd_predict)
print("梯度下降的均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict))
# 岭回归去进行房价预测
rd = Ridge(alpha=1.0)
rd.fit(x_train, y_train)
print(rd.coef_)
# 预测测试集的房子价格
y_rd_predict = std_y.inverse_transform(rd.predict(x_test))
print("梯度下降测试集里面每个房子的预测价格:", y_rd_predict)
print("梯度下降的均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_rd_predict))
return None
if __name__=="__main__":
myliner()
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, classification_report
from sklearn.externals import joblib
import pandas as pd
import numpy as np
def mylinear():
"""
线性回归直接预测房子价格
:return: None
"""
# 获取数据
lb = load_boston()
# 分割数据集到训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
print(y_train, y_test)
# 进行标准化处理(?) 目标值处理?
# 特征值和目标值是都必须进行标准化处理, 实例化两个标准化API
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)
# 目标值
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train)
y_test = std_y.transform(y_test)
# estimator预测
# 正规方程求解方式预测结果
lr = LinearRegression()
lr.fit(x_train, y_train)
print(lr.coef_)
# 保存训练好的模型
joblib.dump(lr, "./tmp/test.pkl")
# 预测房价结果
model = joblib.load("./tmp/test.pkl")
y_predict = std_y.inverse_transform(model.predict(x_test))
print("保存的模型预测的结果:", y_predict)
return None
if __name__=="__main__":
myliner()
逻辑回归是以线性回归的式子作为输入,实现二分类的一种分类算法。
逻辑回归公式
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, classification_report
from sklearn.externals import joblib
import pandas as pd
import numpy as np
def logistic():
"""
逻辑回归做二分类进行癌症预测(根据细胞的属性特征)
:return: NOne
"""
# 构造列标签名字
column = ['Sample code number','Clump Thickness', 'Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']
# 读取数据
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data", names=column)
print(data)
# 缺失值进行处理
data = data.replace(to_replace='?', value=np.nan)
data = data.dropna()
# 进行数据的分割
x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25)
# 进行标准化处理
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 逻辑回归预测
lg = LogisticRegression(C=1.0)
lg.fit(x_train, y_train)
print(lg.coef_)
y_predict = lg.predict(x_test)
print("准确率:", lg.score(x_test, y_test))
print("召回率:", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"]))
return None
if __name__ == "__main__":
logistic()