摘要:对于单片机程序来说,大家都不陌生,但是真正使用架构,考虑架构的恐怕并不多,随着程序开发的不断增多,架构是非常必要的。
应用程序的架构大致有三种:
这是初学者们常用的程序框架设计方案,不用考虑太多东西,代码简单,或者对系统的整体实时性和并发性要求不高;初始化后通过while(1){}
或for(;;)
{}`循环不断调用自己编写完成的函数,也基本不考虑每个函数执行所需要的时间,大部分情况下函数中或多或少都存在毫秒级别的延时等待。
以下是在校期间做的寝室防盗系统的部分代码(当时也存在部分BUG,没有解决。现在再看,其实很多问题,而且比较严重,比如中断服务函数内竟然有3000ms延时,这太可怕了,还有串口发送等等;由于实时性要求不算太高,因此主函数中的毫秒级别延时对系统运行没有多大影响,当然除BUG外;若是后期需要维护,那就是一个大工程,还不如推翻重写):
int main(void)
{
u8 temperature;
u8 humidity;
int a;
delay_init();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
I2c_init();
uart2_Init(9600);
uart_init(9600);//串口初始化为115200
TIM3_Int_Init(4999,7199);
ds1302_init();
while(DHT11_Init())//DHT11初始化
{
led2=0;
}
a1602_init();
Ds1302Init();
EXTIX_Init();
GPIOX_Init();
lcd12864_INIT();
LcdInit();
beep_init();
RED_Init();
led1=1;
beep=0;
while(1)
{
for(a=0;a<11;a++)
{
num[a+3]=At24c02Read(a+2)-208;
delay_us(10);
}
for(a=0;a<6;a++)
{
shuru[a]=At24c02Read(a+13)-208;
delay_us(10);
}
delay_ms(10);
RED_Scan();
Ds1302ReadTime(); //读取ds1302的日期时间
shi=At24c02Read(0); //读取闹钟保存的数据
delay_ms(10);
fen=At24c02Read(1); //读取闹钟保存的数据
usart2_scan(); //蓝牙数据扫描
usart2_bian(); //蓝牙处理数据
usart2_gai();
nao_scan();
k++;
if(k<20)
{
if(k==1)
LcdWriteCom(0x01);//清屏
LcdDisplay(); //显示日期时间
}
if(RED==0)
RED_Scan();
if(k>=20&&k<30)
{
if(k==20)
LcdWriteCom(0x01); //清屏
Lcddisplay(); //显示温湿度
LcdWriteCom(0x80+6);
DHT11_Read_Data(&temperature,&humidity); //读取温湿度值
Temp=temperature;Humi=humidity;
LcdWriteData('0'+temperature/10);
LcdWriteData('0'+temperature%10);
LcdWriteCom(0x80+0X40+6);
LcdWriteData('0'+humidity/10);
LcdWriteData('0'+humidity%10);
}
if(k==30)
k=0;
lcd12864(); //显示防盗闹钟状态
}
}
//定时器3中断服务程序
void TIM3_IRQHandler(void)//TIM3中断
{
int i;
if(TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查TIM3更新中断发生与否
{
TIM_ClearITPendingBit(TIM3, TIM_IT_Update);//清除TIMx更新中断标志
if(key1==1&&FEN-fen==0&&SHI-shi==0)//时间一到闹钟响起
{
f=1;
}
if(key1==0||FEN-fen!=0||SHI-shi!=0)
else
{
f=0;
}
if(USART_RX_BUF[0]=='R'&&USART_RX_BUF[1]=='I'&&USART_RX_BUF[2]=='N'&&USART_RX_BUF[3]=='G')
{
key0=1;
for(i=0;i<17;i++)
{
USART_SendData(USART1, num[i]);//向串口1发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束
USART_RX_STA=0;
}
delay_ms(3000);
for(i=0;i<3;i++)
{
USART_SendData(USART1, num1[i]);//向串口1发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束
USART_RX_STA=0;
}
}
}
}
介于前后台顺序执行法和操作系统之间的一种程序架构设计方案。该设计方案需能帮助嵌入式软件开发者更上一层楼,在嵌入式软件开发过程中,若遇到以下几点,那么该设计方案可以说是最优选择,适用于程序较复杂的嵌入式系统;
该设计方案需要使用一个定时器,一般情况下定时1ms即可(定时时间可随意定,但中断过于频繁效率就低,中断太长,实时性差),因此需要考虑到每个任务函数的执行时间,建议不能超过1ms(能通过程序优化缩短执行时间则最好优化,如果不能优化的,则必须保证该任务的执行周期必须远大于任务所执行的耗时时间),同时要求主循环或任务函数中不能存在毫秒级别的延时。
“如何确定每个函数的任务周期呢?根据任务的耗时和效果决定、如按键扫描任务周期为 10ms(为了提高响应),指示灯控制任务周期为 100ms(通常情况下最高100ms的闪烁频率正好,特殊需求除外),LCD/OLED 显示周期为 100ms(通过这种通过SPI/IIC等接口的方式耗时大约在 1~10ms,甚至更长,所以任务周期必须远大于耗时,同时为了满足人眼所能接受的刷屏效果,也不能太长,100ms 的任务周期比较合适)等。
”
以下介绍两种不同的实现方案,分别针对无函数指针概念的朋友和想进一步学习的朋友。
/**
* @brief 主函数.
* @param None.
* @return None.
*/
int main(void)
{
System_Init();
while (1)
{
if (TIM_1msFlag)// 1ms
{
CAN_CommTask(); // CAN发送/接收通信任务
TIM_1msFlag = 0;
}
if (TIM_10msFlag) // 10ms
{
KEY_ScanTask(); // 按键扫描处理任务
TIM_10msFlag = 0;
}
if (TIM_20msFlag) // 20ms
{
LOGIC_HandleTask();// 逻辑处理任务
TIM_20msFlag = 0;
}
if (TIM_100msFlag) // 100ms
{
LED_CtrlTask(); // 指示灯控制任务
TIM_100msFlag = 0;
}
if (TIM_500msFlag)// 500ms
{
TIM_500msFlag = 0;
}
if (TIM_1secFlag) // 1s
{
WDog_Task(); // 喂狗任务
TIM_1secFlag = 0;
}
}
}
/**
* @brief 定时器3中断服务函数.
* @param None.
* @return None.
*/
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3,TIM_IT_Update) == SET) //溢出中断
{
sg_1msTic++;
sg_1msTic % 1 == 0 ? TIM_1msFlag = 1 : 0;
sg_1msTic % 10 == 0 ? TIM_10msFlag = 1 : 0;
sg_1msTic % 20 == 0 ? TIM_20msFlag = 1 : 0;
sg_1msTic % 100 == 0 ? TIM_100msFlag = 1 : 0;
sg_1msTic % 500 == 0 ? TIM_500msFlag = 1 : 0;
sg_1msTic % 1000 == 0 ? (TIM_1secFlag = 1, sg_1msTic = 0) : 0;
}
TIM_ClearITPendingBit(TIM3,TIM_IT_Update); // 清除中断标志位
}
/**
* @brief 任务函数相关信息结构体定义.
*/
typedef struct{
uint8 m_runFlag; /*!< 程序运行标记:0-不运行,1运行 */
uint16 m_timer; /*!< 计时器 */
uint16 m_itvTime; /*!< 任务运行间隔时间 */
void (*m_pTaskHook)(void); /*!< 要运行的任务函数 */
} TASK_InfoType;
#define TASKS_MAX 5 // 定义任务数目
/** 任务函数相关信息 */
static TASK_InfoType sg_tTaskInfo[TASKS_MAX] = {
{0, 1, 1, CAN_CommTask}, // CAN通信任务
{0, 10, 10, KEY_ScanTask}, // 按键扫描任务
{0, 20, 20, LOGIC_HandleTask}, // 逻辑处理任务
{0, 100, 100, LED_CtrlTask}, // 指示灯控制任务
{0, 1000, 1000, WDog_Task}, // 喂狗任务
};
/**
* @brief 任务函数运行标志处理.
* @note 该函数由1ms定时器中断调用
* @param None.
* @return None.
*/
void TASK_Remarks(void)
{
uint8 i;
for (i = 0; i < TASKS_MAX; i++)
{
if (sg_tTaskInfo[i].m_timer)
{
sg_tTaskInfo[i].m_timer--;
if (0 == sg_tTaskInfo[i].m_timer)
{
sg_tTaskInfo[i].m_timer = sg_tTaskInfo[i].m_itvTime;
sg_tTaskInfo[i].m_runFlag = 1;
}
}
}
}
/**
* @brief 任务函数运行处理.
* @note 该函数由主循环调用
* @param None.
* @return None.
*/
void TASK_Process(void)
{
uint8 i;
for (i = 0; i < TASKS_MAX; i++)
{
if (sg_tTaskInfo[i].m_runFlag)
{
sg_tTaskInfo[i].m_pTaskHook(); // 运行任务
sg_tTaskInfo[i].m_runFlag = 0; // 标志清0
}
}
}
/**
* @brief 主函数.
* @param None.
* @return None.
*/
int main(void)
{
System_Init();
while (1)
{
TASK_Process();
}
}
/**
* @brief 定时器3中断服务函数.
* @param None.
* @return None.
*/
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3,TIM_IT_Update) == SET) //溢出中断
{
TASK_Remarks();
}
TIM_ClearITPendingBit(TIM3,TIM_IT_Update);// 清除中断标志位
}
嵌入式操作系统EOS(Embedded OperatingSystem
)是一种用途广泛的系统软件,过去它主要应用于工业控制和国防系统领域,而对于单片机来说,比较常用的有UCOS、FreeRTOS、RT-Thread
Nano和RTX 等多种抢占式操作系统(其他如Linux等操作系统不适用于单片机)
操作系统和“时间片论法
”,在任务执行方面来说,操作系统对每个任务的耗时没有过多的要求,需要通过设置每个任务的优先级,在高优先级的任务就绪时,会抢占低优先级的任务;操作系统相对复杂,因此这里没有详细介绍了。
关于如何选择合适的操作系统(uCOS
、FreeRTOS
、RTThread
、RTX
等RTOS的对比之特点:
借网上一张对比图:
从上述的对比中可以看出,时间片轮询法的优势还是比较大的,它既有前后台顺序执行法的优点,也有操作系统的优点。结构清晰,简单,非常容易理解,所以这种是比较常用的单片机设计框架。
好文推荐:
2022年嵌入式开发想进互联网大厂,你技术过硬吗?
从事十年嵌入式转内核开发(23K到45K),给兄弟们的一些建议
腾讯首发Linux内核源码《嵌入式开发进阶笔记》差距差的不止一点点哦