import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
from torch.autograd import Variable
show = ToPILImage()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5) )
])
trainset = tv.datasets.CIFAR10(
root= "E:/learn/CIFAR-10/data/",
train= True,
download= True,
transform= transform)
trainloader = t.utils.data.DataLoader(
trainset,
batch_size = 4,
shuffle = True,
num_workers = 0
)
testset = tv.datasets.CIFAR10(
root= "E:/learn/CIFAR-10/data/",
train= False,
download= True,
transform= transform )
testloader = t.utils.data.DataLoader(
trainset,
batch_size = 4,
shuffle = False,
num_workers = 0)
classes = ("plane","car","bird","cat","deer","dog","frog","horse","ship","truck")
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.conv2 = nn.Conv2d(6,16,5)
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0],-1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print (net)
from torch import optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr= 0.001, momentum= 0.9)
for epoch in range(2):
running_loss = 0.0
for i ,data in enumerate(trainloader,0):
inputs , labels = data
inputs, labels = Variable(inputs) , Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs , labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 ==1999:
print("[%d,%5d] loss: %.3f" \
% (epoch+1 , i+1 , running_loss / 2000))
running_loss = 0.0
print("Finished Training")
dataiter = iter(testloader)
images , labels = dataiter.next()
print("实际的label:"," ".join(\
"%08s"%classes[labels[j]] for j in range(4)))
show (tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))
outputs = net(Variable(images))
_, predicted = t.max(outputs.data , 1)
print("预测结果:"," ".join("%5s"\
%classes[predicted[j]] for j in range(4)))
correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = t.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print("10000张测试集中的准确率为:%d %%" % (100*correct / total))
if t.cuda.is_available():
net.cuda()
images = images.cuda()
labels = labels.cuda()
outputs = net(Variable(images))
loss = criterion(outputs, Variable(labels))