一. 情感分析
1. 准备数据
TorchText中的一个重要概念是Field。Field决定了你的数据会被怎样处理。在我们的情感分类任务中,我们所需要接触到的数据有文本字符串和两种情感,“pos"或者"neg”。
Field的参数制定了数据会被怎样处理。
使用TEXT field来定义如何处理电影评论,使用LABEL field来处理两个情感类别。
TEXT field带有tokenize=‘spacy’,这表示我们会用spaCy tokenizer来tokenize英文句子。如果我们不特别声明tokenize这个参数,那么默认的分词方法是使用空格。
安装spaCy
pip install -U spacy
python -m spacy download en
LABEL由LabelField定义。这是一种特别的用来处理label的Field。
import torch
from torchtext import data
SEED = 1234
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
说明:
from torchtext import datasets
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
查看每个数据split有多少条数据
print(f'Number of training examples: {len(train_data)}')
print(f'Number of testing examples: {len(test_data)}')
结果:
Number of training examples: 25000
Number of testing examples: 25000
查看一个example
print(vars(train_data.examples[0]))
结果:
{‘text’: [‘Brilliant’, ‘adaptation’, ‘of’, ‘the’, ‘novel’, ‘that’, ‘made’, ‘famous’, ‘the’, ‘relatives’, ‘of’, ‘Chilean’, ‘President’, ‘Salvador’, ‘Allende’, ‘killed’, ‘.’, ‘In’, ‘the’, ‘environment’, ‘of’, ‘a’, ‘large’, ‘estate’, ‘that’, ‘arises’, ‘from’, ‘the’, ‘ruins’, ‘,’, ‘becoming’, ‘a’, ‘force’, ‘to’, ‘abuse’, ‘and’, ‘exploitation’, ‘of’, ‘outrage’, ‘,’, ‘a’, ‘luxury’, ‘estate’, ‘for’, ‘the’, ‘benefit’, ‘of’, ‘the’, ‘upstart’, ‘Esteban’, ‘Trueba’, ‘and’, ‘his’, ‘undeserved’, ‘family’, ‘,’, ‘the’, ‘brilliant’, ‘Danish’, ‘director’, ‘Bille’, ‘August’, ‘recreates’, ‘,’, ‘in’, ‘micro’, ‘,’, ‘which’, ‘at’, ‘the’, ‘time’, ‘would’, ‘be’, ‘the’, ‘process’, ‘leading’, ‘to’, ‘the’, ‘greatest’, ‘infamy’, ‘of’, ‘his’, ‘story’, ‘to’, ‘the’, ‘hardened’, ‘Chilean’, ‘nation’, ‘,’, ‘and’, ‘whose’, ‘main’, ‘character’, ‘would’, ‘Augusto’, ‘Pinochet’, ‘(’, ‘Stephen’, ‘similarities’, ‘with’, ‘it’, ‘are’, ‘inevitable’, ‘:’, ‘recall’, ‘,’, ‘as’, ‘an’, ‘example’, ‘,’, ‘that’, ‘image’, ‘of’, ‘the’, ‘senator’, ‘with’, ‘dark’, ‘glasses’, ‘that’, ‘makes’, ‘him’, ‘the’, ‘wink’, ‘to’, ‘the’, ‘general’, ‘to’, ‘begin’, ‘making’, ‘the’, ‘palace).
Bille’, ‘August’, ‘attends’, ‘an’, ‘exceptional’, ‘cast’, ‘in’, ‘the’, ‘Jeremy’, ‘protruding’, ‘Irons’, ‘,’, ‘whose’, ‘character’, ‘changes’, ‘from’, ‘arrogance’, ‘and’, ‘extreme’, ‘cruelty’, ‘,’, ‘the’, ‘hard’, ‘lesson’, ‘that’, ‘life’, ‘always’, ‘brings’, ‘us’, ‘to’, ‘almost’, ‘force’, ‘us’, ‘to’, ‘change’, ‘.’, ‘In’, ‘Esteban’, ‘fully’, ‘applies’, ‘the’, ‘law’, ‘of’, ‘resonance’, ‘,’, ‘with’, ‘great’, ‘wisdom’, ‘,’, ‘Solomon’, ‘describes’, ‘in’, ‘these’, ‘words:"The’, ‘things’, ‘that’, ‘freckles’, ‘are’, ‘the’, ‘same’, ‘punishment’, ‘that’, ‘will’, ‘serve’, ‘you’, ‘.’, ‘"’, ‘<’, ‘br’, ‘/>
Unforgettable’, ‘Glenn’, ‘Close’, ‘playing’, ‘splint’, ‘,’, ‘the’, ‘tainted’, ‘sister’, ‘of’, ‘Stephen’, ‘,’, ‘whose’, ‘sin’, ‘,’, ‘driven’, ‘by’, ‘loneliness’, ‘,’, ‘spiritual’, ‘and’, ‘platonic’, ‘love’, ‘was’, ‘the’, ‘wife’, ‘of’, ‘his’, ‘cruel’, ‘snowy’, ‘brother’, ‘.’, ‘Meryl’, ‘Streep’, ‘also’, ‘brilliant’, ‘,’, ‘a’, ‘woman’, ‘whose’, ‘name’, ‘came’, ‘to’, ‘him’, ‘like’, ‘a’, ‘glove’, ‘Clara’, ‘.’, ‘With’, ‘telekinetic’, ‘powers’, ‘,’, ‘cognitive’, ‘and’, ‘mediumistic’, ‘,’, ‘this’, ‘hardened’, ‘woman’, ‘,’, ‘loyal’, ‘to’, ‘his’, ‘blunt’, ‘,’, ‘conservative’, ‘husband’, ‘,’, ‘is’, ‘an’, ‘indicator’, ‘of’, ‘character’, ‘and’, ‘self’, ‘-’, ‘control’, ‘that’, ‘we’, ‘wish’, ‘for’, ‘ourselves’, ‘and’, ‘for’, ‘all’, ‘human’, ‘beings’, ‘.’, ‘<’, ‘br’, ‘/>
Every’, ‘character’, ‘is’, ‘a’, ‘portrait’, ‘of’, ‘virtuosity’, ‘(’, ‘as’, ‘Blanca’, ‘worthy’, ‘rebel’, ‘leader’, ‘Pedro’, ‘Segundo’, ‘unhappy’, ‘…’, ‘)’, ‘or’, ‘a’, ‘portrait’, ‘of’, ‘humiliation’, ‘,’, ‘like’, ‘Stephen’, ‘Jr.’, ‘,’, ‘the’, ‘bastard’, ‘child’, ‘of’, ‘Senator’, ‘,’, ‘who’, ‘serves’, ‘as’, ‘an’, ‘instrument’, ‘for’, ‘the’, ‘return’, ‘of’, ‘the’, ‘boomerang’, ‘.’, ‘<’, ‘br’, ‘/>
The’, ‘film’, ‘moves’, ‘the’, ‘bowels’, ‘,’, ‘we’, ‘recreated’, ‘some’, ‘facts’, ‘that’, ‘should’, ‘not’, ‘ever’, ‘be’, ‘repeated’, ‘,’, ‘but’, ‘that’, ‘absurdly’, ‘still’, ‘happen’, ‘(’, ‘Colombia’, ‘is’, ‘a’, ‘sad’, ‘example’, ‘)’, ‘and’, ‘another’, ‘reminder’, ‘that’, ‘,’, ‘against’, ‘all’, ‘,’, ‘life’, ‘is’, ‘wonderful’, ‘because’, ‘there’, ‘are’, ‘always’, ‘people’, ‘like’, ‘Isabel’, ‘Allende’, ‘and’, ‘immortalize’, ‘just’, ‘Bille’, ‘August’, ‘.’], ‘label’: ‘pos’}
说明:
import random
train_data, valid_data = train_data.split(random_state=random.seed(SEED))
检查一下现在每个部分有多少条数据
print(f'Number of training examples: {len(train_data)}')
print(f'Number of validation examples: {len(valid_data)}')
print(f'Number of testing examples: {len(test_data)}')
结果:
Number of training examples: 17500
Number of validation examples: 7500
Number of testing examples: 25000
说明:
# TEXT.build_vocab(train_data, max_size=25000)
# LABEL.build_vocab(train_data)
TEXT.build_vocab(train_data, max_size=25000, vectors="glove.6B.100d", unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)
print(f"Unique tokens in TEXT vocabulary: {len(TEXT.vocab)}")
print(f"Unique tokens in LABEL vocabulary: {len(LABEL.vocab)}")
结果:
Unique tokens in TEXT vocabulary: 25002
Unique tokens in LABEL vocabulary: 2
说明:
训练数据集中最常见的单词
print(TEXT.vocab.freqs.most_common(20))
结果:
[('the', 201455), (',', 192552), ('.', 164402), ('a', 108963), ('and', 108649), ('of', 100010), ('to', 92873), ('is', 76046), ('in', 60904), ('I', 54486), ('it', 53405), ('that', 49155), ('"', 43890), ("'s", 43151), ('this', 42454), ('-', 36769), ('/>
, 35511), ('was', 34990), ('as', 30324), ('with', 29691)]
可以直接用 stoi(string to int) 或者 itos (int to string) 来查看单词表
print(TEXT.vocab.itos[:10])
结果:
['' , '' , 'the', ',', '.', 'a', 'and', 'of', 'to', 'is']
查看labels
print(LABEL.vocab.stoi)
结果:
defaultdict(<function _default_unk_index at 0x7fbec39a79d8>, {'neg': 0, 'pos': 1})
说明:
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=BATCH_SIZE,
device=device)
2. Word Averaging模型
import torch.nn as nn
import torch.nn.functional as F
class WordAVGModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, output_dim, pad_idx):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.fc = nn.Linear(embedding_dim, output_dim)
def forward(self, text):
embedded = self.embedding(text) # [sent len, batch size, emb dim]
embedded = embedded.permute(1, 0, 2) # [batch size, sent len, emb dim]
pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1) # [batch size, embedding_dim]
return self.fc(pooled)
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
OUTPUT_DIM = 1
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
model = WordAVGModel(INPUT_DIM, EMBEDDING_DIM, OUTPUT_DIM, PAD_IDX)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count_parameters(model):,} trainable parameters')
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
结果:
tensor([[-0.1117, -0.4966, 0.1631, ..., 1.2647, -0.2753, -0.1325],
[-0.8555, -0.7208, 1.3755, ..., 0.0825, -1.1314, 0.3997],
[-0.0382, -0.2449, 0.7281, ..., -0.1459, 0.8278, 0.2706],
...,
[-0.7244, -0.0186, 0.0996, ..., 0.0045, -1.0037, 0.6646],
[-1.1243, 1.2040, -0.6489, ..., -0.7526, 0.5711, 1.0081],
[ 0.0860, 0.1367, 0.0321, ..., -0.5542, -0.4557, -0.0382]])
(1)训练模型
import torch.optim as optim
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
model = model.to(device)
criterion = criterion.to(device)
计算预测的准确率
def binary_accuracy(preds, y):
"""
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
"""
#round predictions to the closest integer
rounded_preds = torch.round(torch.sigmoid(preds))
correct = (rounded_preds == y).float() #convert into float for division
acc = correct.sum()/len(correct)
return acc
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
import time
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
N_EPOCHS = 10
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'wordavg-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
结果:
Epoch: 01 | Epoch Time: 0m 2s
Train Loss: 0.685 | Train Acc: 56.84%
Val. Loss: 0.622 | Val. Acc: 71.09%
Epoch: 02 | Epoch Time: 0m 2s
Train Loss: 0.642 | Train Acc: 71.31%
Val. Loss: 0.510 | Val. Acc: 75.48%
Epoch: 03 | Epoch Time: 0m 2s
Train Loss: 0.573 | Train Acc: 78.31%
Val. Loss: 0.449 | Val. Acc: 79.52%
Epoch: 04 | Epoch Time: 0m 2s
Train Loss: 0.503 | Train Acc: 82.78%
Val. Loss: 0.419 | Val. Acc: 82.72%
Epoch: 05 | Epoch Time: 0m 2s
Train Loss: 0.440 | Train Acc: 85.84%
Val. Loss: 0.408 | Val. Acc: 84.75%
Epoch: 06 | Epoch Time: 0m 2s
Train Loss: 0.389 | Train Acc: 87.59%
Val. Loss: 0.413 | Val. Acc: 86.02%
Epoch: 07 | Epoch Time: 0m 2s
Train Loss: 0.352 | Train Acc: 88.85%
Val. Loss: 0.425 | Val. Acc: 86.92%
Epoch: 08 | Epoch Time: 0m 2s
Train Loss: 0.320 | Train Acc: 89.93%
Val. Loss: 0.440 | Val. Acc: 87.54%
Epoch: 09 | Epoch Time: 0m 2s
Train Loss: 0.294 | Train Acc: 90.74%
Val. Loss: 0.456 | Val. Acc: 88.09%
Epoch: 10 | Epoch Time: 0m 2s
Train Loss: 0.274 | Train Acc: 91.27%
Val. Loss: 0.468 | Val. Acc: 88.49%
3. RNN模型
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim,
n_layers, bidirectional, dropout, pad_idx):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers,
bidirectional=bidirectional, dropout=dropout)
self.fc = nn.Linear(hidden_dim*2, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
embedded = self.dropout(self.embedding(text)) #[sent len, batch size, emb dim]
output, (hidden, cell) = self.rnn(embedded)
#output = [sent len, batch size, hid dim * num directions]
#hidden = [num layers * num directions, batch size, hid dim]
#cell = [num layers * num directions, batch size, hid dim]
#concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden layers
#and apply dropout
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)) # [batch size, hid dim * num directions]
return self.fc(hidden.squeeze(0))
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.5
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
model = RNN(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM,
N_LAYERS, BIDIRECTIONAL, DROPOUT, PAD_IDX)
print(f'The model has {count_parameters(model):,} trainable parameters')
model.embedding.weight.data.copy_(pretrained_embeddings)
UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]
model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)
print(model.embedding.weight.data)
结果:
The model has 4,810,857 trainable parameters
tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[-0.0382, -0.2449, 0.7281, ..., -0.1459, 0.8278, 0.2706],
...,
[-0.7244, -0.0186, 0.0996, ..., 0.0045, -1.0037, 0.6646],
[-1.1243, 1.2040, -0.6489, ..., -0.7526, 0.5711, 1.0081],
[ 0.0860, 0.1367, 0.0321, ..., -0.5542, -0.4557, -0.0382]],
device='cuda:0')
(1)训练RNN模型
optimizer = optim.Adam(model.parameters())
model = model.to(device)
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'lstm-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
结果:
Epoch: 01 | Epoch Time: 1m 29s
Train Loss: 0.676 | Train Acc: 57.69%
Val. Loss: 0.694 | Val. Acc: 53.40%
Epoch: 02 | Epoch Time: 1m 29s
Train Loss: 0.641 | Train Acc: 63.77%
Val. Loss: 0.744 | Val. Acc: 49.22%
Epoch: 03 | Epoch Time: 1m 29s
Train Loss: 0.618 | Train Acc: 65.77%
Val. Loss: 0.534 | Val. Acc: 73.72%
Epoch: 04 | Epoch Time: 1m 30s
Train Loss: 0.634 | Train Acc: 63.79%
Val. Loss: 0.619 | Val. Acc: 66.85%
Epoch: 05 | Epoch Time: 1m 29s
Train Loss: 0.448 | Train Acc: 79.19%
Val. Loss: 0.340 | Val. Acc: 86.63%
4. CNN模型
class CNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, n_filters,
filter_sizes, output_dim, dropout, pad_idx):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.convs = nn.ModuleList([
nn.Conv2d(in_channels = 1, out_channels = n_filters,
kernel_size = (fs, embedding_dim))
for fs in filter_sizes
])
self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
text = text.permute(1, 0) # [batch size, sent len]
embedded = self.embedding(text) # [batch size, sent len, emb dim]
embedded = embedded.unsqueeze(1) # [batch size, 1, sent len, emb dim]
conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
#conv_n = [batch size, n_filters, sent len - filter_sizes[n]]
pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved]
#pooled_n = [batch size, n_filters]
cat = self.dropout(torch.cat(pooled, dim=1))
#cat = [batch size, n_filters * len(filter_sizes)]
return self.fc(cat)
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
N_FILTERS = 100
FILTER_SIZES = [3,4,5]
OUTPUT_DIM = 1
DROPOUT = 0.5
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT, PAD_IDX)
model.embedding.weight.data.copy_(pretrained_embeddings)
UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]
model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)
model = model.to(device)
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
criterion = criterion.to(device)
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'CNN-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
结果:
Epoch: 01 | Epoch Time: 0m 11s
Train Loss: 0.645 | Train Acc: 62.12%
Val. Loss: 0.485 | Val. Acc: 79.61%
Epoch: 02 | Epoch Time: 0m 11s
Train Loss: 0.423 | Train Acc: 80.59%
Val. Loss: 0.360 | Val. Acc: 84.63%
Epoch: 03 | Epoch Time: 0m 11s
Train Loss: 0.302 | Train Acc: 87.33%
Val. Loss: 0.320 | Val. Acc: 86.59%
Epoch: 04 | Epoch Time: 0m 11s
Train Loss: 0.222 | Train Acc: 91.20%
Val. Loss: 0.306 | Val. Acc: 87.17%
Epoch: 05 | Epoch Time: 0m 11s
Train Loss: 0.161 | Train Acc: 93.99%
Val. Loss: 0.325 | Val. Acc: 86.82%
model.load_state_dict(torch.load('CNN-model.pt'))
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
结果:
Test Loss: 0.336 | Test Acc: 85.66%