10X单细胞(10X空间转录组)TCR(BCR)数据分析之洛伦兹曲线和ball-packing plots

hello,大家好,今天我们学习一些简单的内容,关于我们单细胞测序得到的TCR、BCR分析得到的数据如何进行良好的展示,我们来看看下面的分析部分。参考文章为Single-cell analysis pinpoints distinct populations of cytotoxic CD4+ T cells and an IL-10+CD109+ TH2 cell population in nasal polyps,2021年8月发表于SCIENCE IMMUNOLOGY,影响因子18分,文章的内容相当朴实,方法简单,分析内容也直击要害,值得大家读一读,但是我们分享就分享一些独特的分析点。

Ball-packing plots

图片.png

做过单细胞免疫的童鞋对于单细胞TCR、BCR的分析应该都不陌生,一方面我们需要好好分析自己的数据,参考很多的文献方法,另一方面也要只管的展现信息量足够最多且直观的图片,我们先来看看这个图的解释:Ball-packing plots depicting the size of clones within a cluster. Each ball is one clone, and “clone size” depicts the number of cells of an individual clone. Each cluster is color-coded in accord with the original UMAP (Fig. 1A), and the clusters are positioned at a roughly similar position.(看来是建立在单细胞转录组数据定义结果之上的,一个点代表一种克隆型,点的大小代表了克隆型的多少,颜色就是细胞类型,信息量很足)。

图展示的意义:

To enumerate the clonal heterogeneity of each cluster(甚至可以扩展一点,展示两种细胞类型之间的共有克隆型。)This depicted clear clonal expansions in most effector CD4+ T cell subsets, whereas both CD4+ TCM clusters were primarily composed of single TCR clones.很多时候,我们需要这样的分析来直观展示我们的免疫分析结果。

第二种方式,洛伦兹曲线(Lorenz curves)

图片.png
关于洛伦兹曲线,原本并不是用于分析单细胞数据的,大家可以直接百度洛伦兹曲线,就会有相关的内容展示给大家,但是洛伦兹曲线用在这里恰到好处,我们先来看看图片的解释:Lorenz curve of the proportion of clonotypes within a cluster versus proportion of total cells within that same cluster。

展示意义:

To determine which clusters exhibited the greatest clonal expansions,This showed that the largest clonal expansions were present in CD4+ CTL, with prominent clonal outgrowths also observed in TFH, TH2, and Treg cells . Overall, analysis of TH cell clonotypes in nasal polyp tissue depicted highly compartmentalized clonal expansions in effector CD4+ T cells including CD4+ CTL and TH2 cells.(简单的讲,就是克隆expansions,最好是疾病和对照的对比结果)。
图片的横坐标是克隆的比例,纵坐标是细胞的比例,曲线一开始越陡峭,说明前几种克隆型占据了细胞的大多数,也就是存在克隆的expansions,对比看效果会更好。
好了,今天我们学习一些简单的知识,大家学习一下,用在自己的分析上,学以致用,逐步成长。

生活很好,等你超越

你可能感兴趣的:(10X单细胞(10X空间转录组)TCR(BCR)数据分析之洛伦兹曲线和ball-packing plots)