- HarmonyOS Next轻量化模型的部署与优化
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中轻量化模型部署与优化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型部署概述与挑战(一)部署流程与重要性在HarmonyOSNext的应用开发中,将轻量化模型部署到设备上就像是为一艘船找
- 腾讯云目前支持4种DeepSeek开源大模型部署方案
szqcloud
database
企业级的应用,光有大模型能力还不够,推理引擎以外,应用经验、各类原子化能力和现成的应用经验不可或缺。欢迎交流#deepseek腾讯云目前支持4种DeepSeek开源大模型部署方案1、面向开发者开箱即用的HAI方式1)参考:https://mp.weixin.qq.com/s/kZLPfXv3b1sxLSwyRVsEsg2)优势:支持R1,免除购买资源部署的过程,直接开箱使用;参数规模支持1.5B、
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- hunyuan-DiT模型部署指南
算家云
模型构建ComfyUI图片生成大模型人工智能pytorchAIGC
一、介绍Hunyuan-DiT是由腾讯混元推出的扩散模型,支持中文和英文双语输入,其他开源模型相比,Hunyuan-DiT在中文到图像生成方面树立了新的水平。二、部署流程环境要求:所需的最小GPU内存为11GB,建议使用具有32GB内存的GPU,以获得更好的生成质量。1.部署ComfyUI本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装
- 解决Deepseek服务器繁忙的两种高效方案:本地部署与平替平台实测
小真—
自然语言处理ai人工智能
近期爆火的Deepseek访问量激增频繁出现服务器繁忙提示,严重影响工作效率。本人实测了两种有效解决方案,整理了出这份保姆级指南。方案一:本地化部署核心优势说白了就是模型部署在自己本地,只有自己一个人用了没人挤了,但是对电脑硬件要求高部署步骤详解环境准备系统要求:Linux/Windows10+(推荐Ubuntu20.04)硬件配置:NVIDIA显卡(显存≥8GB)、内存≥16GB安装依赖:Pyt
- 《DeepSeek Janus Pro 7B:多模态人工智能大模型部署全攻略》
空云风语
神经网络人工智能深度学习人工智能
《DeepSeekJanusPro7B:多模态人工智能大模型部署全攻略》引言:开启多模态AI新世界在科技飞速发展的当下,多模态AI已成为人工智能领域中最耀眼的明星,正以前所未有的速度改变着我们的生活与工作方式。从智能语音助手到图像识别系统,从自动驾驶汽车到智能医疗诊断,多模态AI的身影无处不在,它让机器能够理解和处理多种类型的信息,如文本、图像、音频等,从而实现更加智能、高效的交互。DeepSee
- 数据驱动的DevOps,MLOps工具链初现端倪
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
DevOps,MLOps,数据驱动,工具链,自动化,持续交付,模型部署,模型监控1.背景介绍在当今以数据为中心的时代,软件开发和机器学习模型的部署和维护日益复杂。传统的开发流程难以满足快速迭代、持续交付和模型生命周期管理的需求。DevOps和MLOps应运而生,旨在通过自动化、持续集成和持续交付等实践,提高软件开发和机器学习模型部署的效率和可靠性。DevOps是一种文化和实践,旨在打破开发和运维之
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- Deep Seek大模型部署到本地 详细教程
Katie。
人工智能AI编程ai
以下是将DeepSeek大模型部署到本地开发环境的详细教程,分为多个步骤,包含技术细节和注意事项:步骤1:环境准备硬件要求GPU:推荐NVIDIAGPU(至少16GB显存,如RTX3090/4090或A100)内存:建议32GB以上存储:根据模型大小预留空间(如7B模型约需15GB)软件要求操作系统:Linux(Ubuntu20.04+)或WindowsWSL2Python:3.8+(推荐3.10
- 昇腾,Ascend,NPU,mindie,镜像,部署vllm:第4篇,尝试多模态大模型部署(Qwen2-vl)
几道之旅
Dify:智能体(Agent)工作流知识库全搞定Agent)人工智能
文章目录前言下载模型前言一直想部署一个多模态大模型,今天就以Qwen2-vl为例尝试一番吧。(当然是在昇腾环境下)提示:需要把这篇文章先看一遍昇腾,mindie,镜像,部署vllm:第2篇,启动mindieservice_daemon服务,支持对Qwen2.5的7B版本的推理提示:本文章的撰写思路是,按照一个思路进行部署,报错,并反思,并解决。所以不太适合直接上来就跟着一步一步做。建议看完全文,再
- 【大模型部署及其应用 】Ollama搭建运行中文大语音模型Llama3-8B-Chinese-Chat
源代码杀手
AIGC核心技术剖析人工智能深度学习llama
Ollama是一种用于运行大语言模型(如LLaMA)的平台,适合本地化部署和运行。以下是如何在Ollama上搭建和运行中文大语言模型Llama3-8B-Chinese-Chat的步骤:下载地址:https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat-GGUF-8bit项目地址:https://github.com/ymcui/Chine
- 人工智能在制造业的具体应用案例-总纲
局外人_Jia
人工智能c#大数据
人工智能在制造业的具体应用案例,结合C#语言实现的技术方案和示例代码:1.预测性维护(PredictiveMaintenance)通过分析设备传感器数据,预测设备故障并提前安排维护。技术方案数据采集:使用C#通过IoT协议(如MQTT、OPCUA)实时采集设备传感器数据(温度、振动等)。模型训练:使用ML.NET或TensorFlow.NET训练回归模型,预测设备剩余寿命。实时预测:将模型部署到C
- 2025年Python领域最新国际动态与技术趋势解析(截至2025年2月)
虫洞没有虫
Python资讯python开发语言
一、AI与Python的深度融合:从模型部署到开发工具OpenAI与谷歌的模型竞赛OpenAI近期推出的免费推理模型o3-mini在数学代码生成和物理模拟领域表现突出,尤其在Python生态中,开发者可通过API快速集成其能力。例如,生成符合物理定律的代码(如动态Shader或游戏逻辑)时,Python因其简洁性成为首选调用语言。而谷歌的Gemini2.0系列(如Pro版本)支持调用谷歌搜索工具和
- 大数据集群Spark-on-Yarn+Paddle深度学习模型部署
jqtree
#大数据开发大数据sparkpaddle
背景:因数据量较大,想要将模型部署到大数据集群上进行计算。测试环境:Spark版本:2.4.0Python版本:2.6.XPaddlePaddle版本:2.4.2处理器:CPU过程记录:1.python运行环境准备本人使用Anaconda管理虚拟环境。关于虚拟环境的准备:模型需要什么第三方库就安装哪些库,最后可以使用conda-pack打包虚拟环境。1.1conda-pack打包记录在虚拟环境里下
- 本地部署DeepSeek-R1模型用于企业生产环境:基于Xinference
MaxCode-1
搭建本地gpt人工智能
本地部署DeepSeek-R1模型用于企业生产环境:基于Xinference1.本文介绍为什么在生产环境中选择Xinference而非Ollama如何安装和配置Xinference如何下载DeepSeek-R1-Distill-Qwen-7B模型如何在Xinference中运行DeepSeek-R1-Distill-Qwen-7B模型部署成功后,如何通过API调用模型如何在Dify中使用DeepS
- 大模型实战篇之Deepseek二、一键部署DeepSeek-V3和DeepSeek-R1模型
伯牙碎琴
大模型DeepseekAI大模型
一键部署DeepSeek-V3和DeepSeek-R1模型:3步,0代码!随着人工智能技术的飞速发展,越来越多的企业和开发者希望将强大的AI模型快速应用到实际业务中。DeepSeek作为一款高性能的语言模型,已经在多个领域展现出巨大的应用潜力。然而,传统的模型部署流程往往复杂且耗时。今天,我们将详细介绍如何在阿里云PAIModelGallery上通过零代码的方式一键部署DeepSeek-V3和De
- Java 大数据模型部署与运维:生产环境的挑战与应对(43)
青云交
大数据新视界Java大视界模型部署运维生产环境环境一致性性能优化分布式部署大数据java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。一、本博客的精华专栏:
- 开源数据分析工具 RapidMiner
kcarly
大数据治理与分析开源数据分析数据挖掘
RapidMiner是一款功能强大且广泛应用的数据分析工具,其核心功能和特点使其成为数据科学家、商业分析师和预测建模人员的首选工具。以下是对RapidMiner的深度介绍:1.概述RapidMiner是一款开源且全面的端到端数据科学平台,支持从数据准备、机器学习、预测分析到模型部署的整个工作流程。它基于Java开发,具有高度的模块化和可扩展性,能够与多种数据源无缝集成,包括MicrosoftExc
- 使用Ollama本地化部署DeepSeek
大模型llm人工智能
1、Ollama简介Ollama是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与OpenAI兼容的API接口,适合开发者和企业快速搭建私有化AI服务。Ollama的主要特点包括:轻量化部署:支持在本地设备上运行模型,无需依赖云端服务。多模型支持:兼容多种开源模型,如LLaMA、DeepSeek等。高效管理:提供命令行工具,方便用户下载
- LLM大模型部署实战指南:部署简化流程
汀、人工智能
LLM工业级落地实践AIAgent人工智能
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发1.Ollama部署的本地模型()Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。,这是Ollama的官网地址:https://ollama.com/以下是其主要特点和功能概述:简化部署:Ollama目标在于简化在Docker容器中部署大型语言
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- AI大模型部署:Ollama与vLLM部署对比:哪个更合适?
大模型部署
langchain人工智能dockerllamaLLM程序员Ollama
前言近年来,大语言模型(LLM)的应用日益广泛,而高效的部署方案至关重要。Ollama和vLLM作为两种流行的LLM部署工具,各有优劣。本文将深入比较Ollama和vLLM的部署方式,帮助选择最合适的方案。Ollama:简单易用的LLM部署工具Ollama以其简洁的安装和易于使用的特性而闻名。其官方文档清晰易懂,即使是新手也能快速上手。Ollama支持多种LLM模型,并提供便捷的命令行界面进行管理
- DeepSeek R1 Ollama本地化部署全攻略:三步实现企业级私有化大模型部署
Coderabo
DeepSeekR1Ollama
前言Ollama作为当前最受欢迎的本地大模型运行框架,为DeepSeekR1的私有化部署提供了便捷高效的解决方案。本文将深入讲解如何将HuggingFace格式的DeepSeekR1模型转换为Ollama支持的GGUF格式,并实现企业级的高可用部署方案。文章包含完整的量化配置、API服务集成和性能优化技巧。—一、基础环境搭建1.1系统环境要求操作系统:Ubuntu22.04LTS或CentOS8+
- 使用Ollama本地化部署DeepSeek
大模型llm人工智能
1、Ollama简介Ollama是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与OpenAI兼容的API接口,适合开发者和企业快速搭建私有化AI服务。Ollama的主要特点包括:轻量化部署:支持在本地设备上运行模型,无需依赖云端服务。多模型支持:兼容多种开源模型,如LLaMA、DeepSeek等。高效管理:提供命令行工具,方便用户下载
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- LLM模型部署经验分享
lewis_kai
阿里云语言模型
LLM模型部署经验分享作者:大连理工大学李凯首先,你需要选择一个合适的部署平台,这可以是本地服务器、云服务提供商(如AWS、Azure、GoogleCloud等)、边缘设备或者特定的部署服务(如HuggingFaceHub)。在这里我使用的是魔搭平台的云服务器。然后下载你要部署的模型,这里下载的是通义千问。下载并部署玩模型后,我们还可以对模型转换和优化,该文会介绍基于OpenVINO的模型量化实践
- Torchserve服务开发
qq_27844739
AI工程化运维人工智能pytorch服务器
Torchserve服务开发文章目录Torchserve服务开发0.Torchserve介绍0.1.背景0.2.API类型1.开发使用1.0.环境部署1.1.handler开发1.1.1.context参数1.1.2.data参数1.2.handler调试2.配置文件3.batch推理0.Torchserve介绍0.1.背景TorchServe是PyTorch中推荐的模型部署解决方案,通过它可以将
- 大模型部署工具 llama.cpp 介绍与安装使用
大模型柳儿
llama服务器人工智能web安全linux安全
1.大模型部署工具llama.cpp大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp(https://github.com/ggerganov/llama.cpp)主要解决的是推理过程中的性能问题。主要有两点优化:llama.cp
- LLM架构与优化:从理论到实践的关键技术
XianxinMao
人工智能
标题:“LLM架构与优化:从理论到实践的关键技术”文章信息摘要:文章探讨了大型语言模型(LLM)开发与应用中的关键技术,包括Transformer架构、注意力机制、采样技术、Tokenization等基础理论,以及模型部署、应用开发、优化等实践技能。重点分析了预训练、后训练、监督微调(SFT)和偏好对齐(PreferenceAlignment)在提升模型性能中的作用,并对比了直接偏好优化(DPO)
- InternLM: LMDeploy 量化部署进阶实践
dilvx
机器学习
LMDeploy部署模型模型部署是将训练好的深度学习模型在特定环境中运行。欢迎使用LMDeploy,支持市面上主流的格式和算法。大模型缓存推理本章的前半部分主要讲量化,包括KV-Cache量化、权重量化、激活值量化。量化主要是为了节省存储空间,用int4,int8来重新表示fp16,将模型的显存占用控制在200G可接受的范围下。值得注意的是,在transformer架构下,计算的瓶颈主要在显存带宽
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin