文本特征提取

当提取文本的特征时,通常需要将文本转换为数值表示,以便将其输入到机器学习模型中。以下是一个使用scikit-learn库的文本特征提取示例:

实现文本特征提取方法思路

以下是从文本中提取特征的一些建议:

  1. 词频统计:统计文本中每个单词出现的次数,可以用于分析文本的主题和关键概念。
{"我": 1, "要": 1, "从": 1, "文本": 1, "提取": 1, "如下": 1, "特征": 1}
  1. N-gram分析:将文本切分成N个单词的组合,可以用于分析文本中的词汇组合和语言模式。
2-gram: ["我要", "要从", "从文本", "文本提取", "提取如下", "如下特征"]
  1. 词性标注:为文本中的每个单词分配一个词性标签,可以用于分析文本的语法结构。
[("我", "代词"), ("要", "动词"), ("从", "介词"), ("文本", "名词"), ("提取", "动词"), ("如下", "形容词"), ("特征", "名词")]
  1. 情感分析:判断文本中所表达的情感是积极、消极还是中立。
情感分析结果: 中立
  1. 实体识别:在文本中识别并标记人名、地名、组织名等实体。
示例: "OpenAI是一家位于美国的人工智能研究实验室。"
实体识别结果: [("OpenAI", "组织"), ("美国", "地名"), ("人工智能", "领域"), ("研究实验室", "机构")]
  1. 主题建模:通过分析文本中的词汇分布,为文本分配一个或多个主题标签。
主题建模结果: ["人工智能", "自然语言处理"]
from sklearn.feature_extraction.text import CountVectorizer

# 创建CountVectorizer对象
vectorizer = CountVectorizer()

# 假设我们有一个包含文本的列表
text = ["This is the first document.", "This is the second document.", "And this is the third one.", "Is this the first document?"]

# 将文本转换为数值表示
X = vectorizer.fit_transform(text)

# 查看特征词
print(vectorizer.get_feature_names())

# 查看特征矩阵
print(X.toarray())

文本特征提取_第1张图片

简单demo基于chatgpt

国内镜像ChatMind AI

群体分析和异常分析。让我们回顾一下,本书中所谓异常分析,指的 是辨别与正常或通常秩序、形式或规则发生偏离的情况的含义;或者 辨别某些应该出现但却没有出现的问题的含义。当群体进行移动或变 化时(无论是变成更大,还是变小和变得不重要),异常分析的结果 都是可以识别的。异常分析包含三种基线,分别是文化基线、技术基 线和功能基线。异常分析依靠这些基线来判断哪些是“正常的”。 一 般来说,群体的组成、发展、影响和最终消亡,就是基线出现扰动的 原因。群体的内容包括群体的构成、发展、与其他群体的关联、运动 和影响等等,每一方面都涉及基线的变化。这些变化有时很容易发 现,但有时却是人的意识难以发现的。因此,异常分析及其对基线的 依赖,就是通过这一交集与群体分析产生了互动。

  • 异常分析指辨别与正常或通常秩序、形式或规则发生偏离的情况。
  • 异常分析也可以用于辨别某些应该出现但却没有出现的问题。
  • 异常分析基于文化基线、技术基线和功能基线来判断何为“正常的”。
  • 群体的组成、发展、影响和最终消亡是基线出现扰动的原因。
  • 群体内容包括群体的构成、发展、与其他群体的关联、运动和影响等。
  • 每一方面都涉及基线的变化,这些变化有时很容易发现,但有时难以察觉。
  • 异常分析依赖于基线的变化,通过此依赖与群体分析产生了互动。

让它划分

  • 异常分析指辨别与正常或通常秩序、形式或规则发生偏离的情况:主语是“异常分析”,谓语是“辨别”,宾语是“与正常或通常秩序、形式或规则发生偏离的情况”。
  • 异常分析也可以用于辨别某些应该出现但却没有出现的问题:主语是异常分析,谓语是“可以用于辨别”,宾语是“某些应该出现但却没有出现的问题”。
  • 异常分析基于文化基线、技术基线和功能基线来判断何为“正常的”:主语是异常分析,谓语是“基于”,宾语是“文化基线、技术基线和基本线”,宾补是“判断何为‘正常的’”。
  • 群体的组成、发展、影响和最终消亡是基线出现扰动的原因:主语是群体的组成、发展、影响和最终消亡,谓语是“是”,宾语是“基线出现扰动的原因”。
  • 群体内容包括群体的构成、发展、与其他群体的关联、运动和影响等:主语是群体内容,谓语是“包括”,宾语是“群体的构成、发展、与其他群体的关联、运动和影响等”。
  • 每一方面都涉及基线的变化,这些变化有时很容易发现,但有时难以察觉:主语是每一方面,谓语是“涉及”,宾语是“基线的变化”,插入语是“这些变化”,主语补足语是“有时很容易发现,但有时难以察觉”。
  • 异常分析依赖于基线的变化,通过此依赖与群体分析产生了互动:主语是异常分析依赖,谓语是“产生了”,宾语是“互动”,主语补足语是“与群体分析”。

我不要原句,就要主语,谓语和宾语,以空格方式输出

异常分析 辨别 与正常或通常秩序、形式或规则发生偏离的情况
异常分析 可以用于辨别 某些应该出现但却没有出现的问题
异常分析 基于 文化基线、技术基线和基本线
群体的组成、发展、影响和最终消亡 是 基线出现扰动的原因
群体内容 包括 群体的构成、发展、与其他群体的关联、运动和影响等

对应输入就可以

主谓宾代码提取--扩展

主谓宾提取_nlp 主谓宾_Penno_彭儒的博客-CSDN博客

# Copyright 2017 Peter de Vocht
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import en_core_web_sm
from collections.abc import Iterable

# use spacy small model
nlp = en_core_web_sm.load()

# dependency markers for subjects
SUBJECTS = {"nsubj", "nsubjpass", "csubj", "csubjpass", "agent", "expl"}
# dependency markers for objects
OBJECTS = {"dobj", "dative", "attr", "oprd"}
# POS tags that will break adjoining items
BREAKER_POS = {"CCONJ", "VERB"}
# words that are negations
NEGATIONS = {"no", "not", "n't", "never", "none"}


# does dependency set contain any coordinating conjunctions?
def contains_conj(depSet):
return "and" in depSet or "or" in depSet or "nor" in depSet or \
"but" in depSet or "yet" in depSet or "so" in depSet or "for" in depSet


# get subs joined by conjunctions
def _get_subs_from_conjunctions(subs):
    more_subs = []
for sub in subs:
# rights is a generator
        rights = list(sub.rights)
        rightDeps = {tok.lower_ for tok in rights}
if contains_conj(rightDeps):
            more_subs.extend([tok for tok in rights if tok.dep_ in SUBJECTS or tok.pos_ == "NOUN"])
if len(more_subs) > 0:
                more_subs.extend(_get_subs_from_conjunctions(more_subs))
return more_subs


# get objects joined by conjunctions
def _get_objs_from_conjunctions(objs):
    more_objs = []
for obj in objs:
# rights is a generator
        rights = list(obj.rights)
        rightDeps = {tok.lower_ for tok in rights}
if contains_conj(rightDeps):
            more_objs.extend([tok for tok in rights if tok.dep_ in OBJECTS or tok.pos_ == "NOUN"])
if len(more_objs) > 0:
                more_objs.extend(_get_objs_from_conjunctions(more_objs))
return more_objs


# find sub dependencies
def _find_subs(tok):
    head = tok.head
while head.pos_ != "VERB" and head.pos_ != "NOUN" and head.head != head:
        head = head.head
if head.pos_ == "VERB":
        subs = [tok for tok in head.lefts if tok.dep_ == "SUB"]
if len(subs) > 0:
            verb_negated = _is_negated(head)
            subs.extend(_get_subs_from_conjunctions(subs))
return subs, verb_negated
elif head.head != head:
return _find_subs(head)
elif head.pos_ == "NOUN":
return [head], _is_negated(tok)
return [], False


# is the tok set's left or right negated?
def _is_negated(tok):
    parts = list(tok.lefts) + list(tok.rights)
for dep in parts:
if dep.lower_ in NEGATIONS:
return True
    return False


# get all the verbs on tokens with negation marker
def _find_svs(tokens):
    svs = []
    verbs = [tok for tok in tokens if tok.pos_ == "VERB"]
for v in verbs:
        subs, verbNegated = _get_all_subs(v)
if len(subs) > 0:
for sub in subs:
                svs.append((sub.orth_, "!" + v.orth_ if verbNegated else v.orth_))
return svs


# get grammatical objects for a given set of dependencies (including passive sentences)
def _get_objs_from_prepositions(deps, is_pas):
    objs = []
for dep in deps:
if dep.pos_ == "ADP" and (dep.dep_ == "prep" or (is_pas and dep.dep_ == "agent")):
            objs.extend([tok for tok in dep.rights if tok.dep_  in OBJECTS or
                         (tok.pos_ == "PRON" and tok.lower_ == "me") or
                         (is_pas and tok.dep_ == 'pobj')])
return objs


# get objects from the dependencies using the attribute dependency
def _get_objs_from_attrs(deps, is_pas):
for dep in deps:
if dep.pos_ == "NOUN" and dep.dep_ == "attr":
            verbs = [tok for tok in dep.rights if tok.pos_ == "VERB"]
if len(verbs) > 0:
for v in verbs:
                    rights = list(v.rights)
                    objs = [tok for tok in rights if tok.dep_ in OBJECTS]
                    objs.extend(_get_objs_from_prepositions(rights, is_pas))
if len(objs) > 0:
return v, objs
return None, None


# xcomp; open complement - verb has no suject
def _get_obj_from_xcomp(deps, is_pas):
for dep in deps:
if dep.pos_ == "VERB" and dep.dep_ == "xcomp":
            v = dep
            rights = list(v.rights)
            objs = [tok for tok in rights if tok.dep_ in OBJECTS]
            objs.extend(_get_objs_from_prepositions(rights, is_pas))
if len(objs) > 0:
return v, objs
return None, None


# get all functional subjects adjacent to the verb passed in
def _get_all_subs(v):
    verb_negated = _is_negated(v)
    subs = [tok for tok in v.lefts if tok.dep_ in SUBJECTS and tok.pos_ != "DET"]
if len(subs) > 0:
        subs.extend(_get_subs_from_conjunctions(subs))
else:
        foundSubs, verb_negated = _find_subs(v)
        subs.extend(foundSubs)
return subs, verb_negated


# find the main verb - or any aux verb if we can't find it
def _find_verbs(tokens):
    verbs = [tok for tok in tokens if _is_non_aux_verb(tok)]
if len(verbs) == 0:
        verbs = [tok for tok in tokens if _is_verb(tok)]
return verbs


# is the token a verb?  (excluding auxiliary verbs)
def _is_non_aux_verb(tok):
return tok.pos_ == "VERB" and (tok.dep_ != "aux" and tok.dep_ != "auxpass")


# is the token a verb?  (excluding auxiliary verbs)
def _is_verb(tok):
return tok.pos_ == "VERB" or tok.pos_ == "AUX"


# return the verb to the right of this verb in a CCONJ relationship if applicable
# returns a tuple, first part True|False and second part the modified verb if True
def _right_of_verb_is_conj_verb(v):
# rights is a generator
    rights = list(v.rights)

# VERB CCONJ VERB (e.g. he beat and hurt me)
    if len(rights) > 1 and rights[0].pos_ == 'CCONJ':
for tok in rights[1:]:
if _is_non_aux_verb(tok):
return True, tok

return False, v


# get all objects for an active/passive sentence
def _get_all_objs(v, is_pas):
# rights is a generator
    rights = list(v.rights)

    objs = [tok for tok in rights if tok.dep_ in OBJECTS or (is_pas and tok.dep_ == 'pobj')]
    objs.extend(_get_objs_from_prepositions(rights, is_pas))

#potentialNewVerb, potentialNewObjs = _get_objs_from_attrs(rights)
    #if potentialNewVerb is not None and potentialNewObjs is not None and len(potentialNewObjs) > 0:
    #    objs.extend(potentialNewObjs)
    #    v = potentialNewVerb

    potential_new_verb, potential_new_objs = _get_obj_from_xcomp(rights, is_pas)
if potential_new_verb is not None and potential_new_objs is not None and len(potential_new_objs) > 0:
        objs.extend(potential_new_objs)
        v = potential_new_verb
if len(objs) > 0:
        objs.extend(_get_objs_from_conjunctions(objs))
return v, objs


# return true if the sentence is passive - at he moment a sentence is assumed passive if it has an auxpass verb
def _is_passive(tokens):
for tok in tokens:
if tok.dep_ == "auxpass":
return True
    return False


# resolve a 'that' where/if appropriate
def _get_that_resolution(toks):
for tok in toks:
if 'that' in [t.orth_ for t in tok.lefts]:
return tok.head
return None


# simple stemmer using lemmas
def _get_lemma(word: str):
    tokens = nlp(word)
if len(tokens) == 1:
return tokens[0].lemma_
return word


# print information for displaying all kinds of things of the parse tree
def printDeps(toks):
for tok in toks:
print(tok.orth_, tok.dep_, tok.pos_, tok.head.orth_, [t.orth_ for t in tok.lefts], [t.orth_ for t in tok.rights])


# expand an obj / subj np using its chunk
def expand(item, tokens, visited):
if item.lower_ == 'that':
        temp_item = _get_that_resolution(tokens)
if temp_item is not None:
            item = temp_item

    parts = []

if hasattr(item, 'lefts'):
for part in item.lefts:
if part.pos_ in BREAKER_POS:
break
            if not part.lower_ in NEGATIONS:
                parts.append(part)

    parts.append(item)

if hasattr(item, 'rights'):
for part in item.rights:
if part.pos_ in BREAKER_POS:
break
            if not part.lower_ in NEGATIONS:
                parts.append(part)

if hasattr(parts[-1], 'rights'):
for item2 in parts[-1].rights:
if item2.pos_ == "DET" or item2.pos_ == "NOUN":
if item2.i not in visited:
                    visited.add(item2.i)
                    parts.extend(expand(item2, tokens, visited))
break

    return parts


# convert a list of tokens to a string
def to_str(tokens):
if isinstance(tokens, Iterable):
return ' '.join([item.text for item in tokens])
else:
return ''


# find verbs and their subjects / objects to create SVOs, detect passive/active sentences
def findSVOs(tokens):
    svos = []
    is_pas = _is_passive(tokens)
    verbs = _find_verbs(tokens)
    visited = set()  # recursion detection
    for v in verbs:
        subs, verbNegated = _get_all_subs(v)
# hopefully there are subs, if not, don't examine this verb any longer
        if len(subs) > 0:
            isConjVerb, conjV = _right_of_verb_is_conj_verb(v)
if isConjVerb:
                v2, objs = _get_all_objs(conjV, is_pas)
for sub in subs:
for obj in objs:
                        objNegated = _is_negated(obj)
if is_pas:  # reverse object / subject for passive
                            svos.append((to_str(expand(obj, tokens, visited)),
                                         "!" + v.lemma_ if verbNegated or objNegated else v.lemma_, to_str(expand(sub, tokens, visited))))
                            svos.append((to_str(expand(obj, tokens, visited)),
                                         "!" + v2.lemma_ if verbNegated or objNegated else v2.lemma_, to_str(expand(sub, tokens, visited))))
else:
                            svos.append((to_str(expand(sub, tokens, visited)),
                                         "!" + v.lower_ if verbNegated or objNegated else v.lower_, to_str(expand(obj, tokens, visited))))
                            svos.append((to_str(expand(sub, tokens, visited)),
                                         "!" + v2.lower_ if verbNegated or objNegated else v2.lower_, to_str(expand(obj, tokens, visited))))
else:
                v, objs = _get_all_objs(v, is_pas)
for sub in subs:
if len(objs) > 0:
for obj in objs:
                            objNegated = _is_negated(obj)
if is_pas:  # reverse object / subject for passive
                                svos.append((to_str(expand(obj, tokens, visited)),
                                             "!" + v.lemma_ if verbNegated or objNegated else v.lemma_, to_str(expand(sub, tokens, visited))))
else:
                                svos.append((to_str(expand(sub, tokens, visited)),
                                             "!" + v.lower_ if verbNegated or objNegated else v.lower_, to_str(expand(obj, tokens, visited))))
else:
# no obj - just return the SV parts
                        svos.append((to_str(expand(sub, tokens, visited)),
                                     "!" + v.lower_ if verbNegated else v.lower_,))

return svos

 

你可能感兴趣的:(人工智能,机器学习,python)