抽样函数sint/t反常求积分

抽样函数 S a ( t ) = s i n t t Sa(t)= \frac{sint}{t} Sa(t)=tsint不可积(原函数不可用简单的基本函数表示),下面就介绍怎么求它的反常积分。


I ( x ) = ∫ 0 ∞ e − x t s i n t t d t I(x)=\int_0^{\infty}e^{-xt}\frac{sint}{t} \mathrm{d}t I(x)=0exttsintdt
I ′ ( x ) = ∫ 0 ∞ e − x t d c o s t = − 1 1 + x 2 \begin{aligned} I '(x) & =\int_0^{\infty}e^{-xt} \mathrm{d}cost \\ & =\frac{-1}{1+x^2} \end{aligned} I(x)=0extdcost=1+x21
I ( x ) = ∫ − 1 1 + x 2 d x = − a r c t a n x + C (1) \begin{aligned} I (x) & =\int \frac{-1}{1+x^2} \mathrm{d}x \\ & =-arctanx+C \end{aligned}\tag{1} I(x)=1+x21dx=arctanx+C(1)
又因为
∣ I ( x ) ∣ = ∣ ∫ 0 ∞ e − x t s i n t t d t ∣ ≤ ∫ 0 ∞ ∣ e − x t s i n t t ∣ d t ≤ ∫ 0 ∞ ∣ e − x t ∣ d t = 1 x \begin{aligned} |I (x)| & =|\int_0^{\infty}e^{-xt}\frac{sint}{t} \mathrm{d}t |\\ & \le \int_0^{\infty}|e^{-xt}\frac{sint}{t}| \mathrm{d}t\\ & \le \int_0^{\infty}|e^{-xt}| \mathrm{d}t\\ & =\frac 1x \end{aligned} I(x)=0exttsintdt0exttsintdt0extdt=x1
又: lim ⁡ x → + ∞ 1 x = 0 {\lim_{x \to +\infty}} \frac 1x=0 x+limx1=0
∣ I ( x ) ∣ > 0 |I(x)|>0 I(x)>0
lim ⁡ x → + ∞ I ( x ) = 0 \lim_{x\to +\infty}I(x)=0 x+limI(x)=0
对(1)式两边取极限知
0 = − π 2 + C 0=-\frac \pi2+C 0=2π+C

I ( 0 ) = ∫ 0 ∞ s i n t t d t = C = π 2 I(0)=\int_0^\infty \frac{sint}{t} \mathrm{d}t=C=\frac \pi2 I(0)=0tsintdt=C=2π
又抽样函数是偶函数,则 ∫ − ∞ ∞ s i n t t d t = π \int_{-\infty}^\infty \frac{sint}{t} \mathrm{d}t=\pi tsintdt=π

你可能感兴趣的:(数学分析/微积分)