C语言实现单链表(超多配图,这下不得不学会单链表了)

目录

一:什么是链表?

二:创建源文件和头文件

(1)头文件

(2)源文件

三:实参和形参

四:一步步实现单向链表

(1)建立一个头指针并置空

(2)打印链表,便于观察测试

(3)创建一个新的结点

(4)尾部插入数据

(5)头部插入

(6)尾部删除

(7)头部删除

(8)查找

(9)指定位置插入

(10)指定删除

(11)清空链表

(12)最终代码

SingleLinkedList.h

SingleLinkedList.c

text.c

五:小结


一:什么是链表?

我们先看下面这个结构体。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第1张图片

这个结构体存储数据的同时保存了一个结构体指针。

链表其实就是一个个结构体(后文把这样的一个结构体称为结点)通过保存地址的方式找到下一个结构体,最后一个结构体保存的地址为空。 

链表的两种实现方式

(1)带头结点

(2)不带头结点

区别:带头结点有一个哨兵结点,这个节点作为第一个节点,它的数据域不存储数据。

两者各有利弊:我们进行结点删除时需要用到待删除结点的前一个结点。对于没有哨兵的单链表,当链表中只存在一个节点,需要进行单独处理。从而代码的复杂性增加。但如果设计了哨兵结点,则第一个结点的处理与其他结点一致。但处理链表数据时这个哨兵结点属于无效数据,我们需要规避这个数据,也需要进行处理

本文选择的是无哨兵链表。

二:创建源文件和头文件

(1)头文件

头文件SingleLinkedList.h用来包含一些必要的头文件,声明函数以及定义结构体。

(2)源文件

源文件SingleLinkedList.c用来实现链表的具体功能

源文件text.c用来对各个功能进行测试

三:实参和形参

在实现链表之前,我们需要先深入的认识一下实参和形参的关系。

我们看下面这个代码:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第2张图片

我们可以看到a的值并没有发生变化,那我们如果传入a的地址进行解引用呢?我们看下面这个代码。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第3张图片

我们可以看到a成功被修改为了5,但这是为什么呢?

答:其实在传入参数的时候系统临时开辟了一块空间用来接收数据,函数调用结束时这一块空间就会被释放,这意味着如果我们直接传入a的值,我们只是在对这一块临时开辟的空间内的数据进行修改,无论如何都不会影响到a,但如果我们传入的是a的地址,对a进行解引用就能直接找到并修改a

图解:C语言实现单链表(超多配图,这下不得不学会单链表了)_第4张图片

C语言实现单链表(超多配图,这下不得不学会单链表了)_第5张图片

 这是否意味着只要我们传入的是地址就一定能改变实参的值呢?我们看下面这个代码。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第6张图片

我们发现虽然传入的是地址,但p依旧指向a[0],并没有改变。这是为什么呢?

答:与前面的原理一致,我们传入p的时候也临时开辟了一片空间来保存p的值,无论我们怎么改变p值,在函数调用结束后这片空间会被释放,所以p实际上还是指向a[0]的。

图解: C语言实现单链表(超多配图,这下不得不学会单链表了)_第7张图片

那如果我们传入p的地址,是不是就能改变p了呢?我们看代码。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第8张图片

图解:C语言实现单链表(超多配图,这下不得不学会单链表了)_第9张图片 

四:一步步实现单向链表

(1)建立一个头指针并置空

struct SListNode* head = NULL;

(2)打印链表,便于观察测试

我们用头指针的地址是否为空为循环条件
我们可以分成两种情况讨论,如果链表为空,我们不进行遍历,直接打印NULL。
如果链表中有元素,从头指针(第一个结点)开始,我们打印结点数据,并让头指针指向下一个结点,一直到NULL。

代码:C语言实现单链表(超多配图,这下不得不学会单链表了)_第10张图片

图解(以有三个结点为例子):

C语言实现单链表(超多配图,这下不得不学会单链表了)_第11张图片

(3)创建一个新的结点

只要插入新结点,我们就一定要生成新的结点,我们可以把生成新结点的功能单独封装成函数BuyListNode()

代码:C语言实现单链表(超多配图,这下不得不学会单链表了)_第12张图片

(4)尾部插入数据

进行数据插入,我们要改变实参的值(即改变指针的指向),必须传入头指针的地址(二级指针)。

基础思路:【1】在进行数据插入之前,我们要先生成一个新的结点

【2】要进行尾部插入,我们需要找到链表的最后一个结点,并将它存储的指针指向新生成的结构体

【3】我们设计一个指针tail来找尾部结点,如果tail->next为NULL,我们就找到了尾部结点,结束循环。

图解:C语言实现单链表(超多配图,这下不得不学会单链表了)_第13张图片

 

现阶段代码:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第14张图片

我们对代码进行测试:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第15张图片

可以发现程序崩溃了,这是为什么呢?

答:这是因为我们没有考虑链表为空的情况,如果链表为空,我们会直接对空指针进行解引用,导致程序崩溃。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第16张图片

 为了解决这个问题,我们可以对这种情况进行单独处理。

 代码:C语言实现单链表(超多配图,这下不得不学会单链表了)_第17张图片

再次测试,观察结果。

C语言实现单链表(超多配图,这下不得不学会单链表了)_第18张图片 我们发现数据成功插入了。

(5)头部插入

进行数据插入,我们要改变实参的值(即改变指针的指向),必须传入头指针的地址(二级指针)。

思路:头部插入我们只需要让头指针指向新结点,让新结点的指针域指向原来的头结点

代码:C语言实现单链表(超多配图,这下不得不学会单链表了)_第19张图片

前面进行尾部插入的时候需要考虑链表为空的情况,那头部插入需不需要单独进行这个临界条件的处理呢? 

图解:C语言实现单链表(超多配图,这下不得不学会单链表了)_第20张图片

 我们可以发现最后结点的指针域会指向空,所以不需要考虑这个临界情况。

(6)尾部删除

进行数据插入,我们要改变实参的值(即改变指针的指向),必须传入头指针的地址(二级指针)。

思路:和尾部插入一样我们需要使用一个tail指针找到尾部结点(方法与前面一致),然后释放这个结点

我们看代码和运行结果:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第21张图片

C语言实现单链表(超多配图,这下不得不学会单链表了)_第22张图片

 我们发现程序打印的是随机数,这是为什么呢?

答:因为我们释放最后一个结点的时候上一个结点的指针域没有指空,但空间已经被系统回收了,此时我们进行指针的引用是非法的,也就是我们常说的野指针

解决方案:我们可以设计一个指针prev来记录倒数第二个结点,在释放尾结点后让倒数第二个结点的指针域指向空

但此时程序依然存在不足。
如果链表为空,我们就会对空指针进行解引用,所以我们需要单独处理这种情况,这里提供两种解决方案
第一,我们可以直接返回空
第二,我们可以使用断言让程序直接报错

这里使用第一种方法。
代码和测试结果:
C语言实现单链表(超多配图,这下不得不学会单链表了)_第23张图片

C语言实现单链表(超多配图,这下不得不学会单链表了)_第24张图片

(7)头部删除

进行数据插入,我们要改变实参的值(即改变指针的指向),必须传入头指针的地址(二级指针)。

思路:进行头部删除,可以将第一个结点释放,然后让头指针指向第二个结点

代码和运行结果:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第25张图片

C语言实现单链表(超多配图,这下不得不学会单链表了)_第26张图片

(8)查找

查找有两种实现方式,一种返回结点地址,一种返回数据在第几个结点

思路:遍历整个链表,一直到找到要查找的数据或最后一个结点为止。
如果没有查找到数据,返回NULL或者0。

第一种(我用的):

C语言实现单链表(超多配图,这下不得不学会单链表了)_第27张图片

 第二种:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第28张图片

上述函数我们只能找到第一个数,后面相同的找不到,如果我们需要查找链表中所有该数的位置 ,我们可以设计一个pos指针并进行循环,循环结束条件为pos为空,这样就可以实现多次查找,我们看代码。(这个方法只适用于第一种)

C语言实现单链表(超多配图,这下不得不学会单链表了)_第29张图片

(9)指定位置插入

这里给出两种插入方式,一种是指定在那个结点前插入,一种是指定在那个结点后插入

第一种前插入:C语言实现单链表(超多配图,这下不得不学会单链表了)_第30张图片

 第一种后插入:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第31张图片

 在进行插入前我们需要找到要插入的那个结点的前面(后面),可以先使用查找函数找到位置,在进行插入。

测试结果:C语言实现单链表(超多配图,这下不得不学会单链表了)_第32张图片

(10)指定删除

思路:删除的思路同尾删类似,我们需要找到待删除的结点并保存待删除的结点的指针域。

代码:C语言实现单链表(超多配图,这下不得不学会单链表了)_第33张图片

在进行删除前我们需要找到要删除的那个结点的前一个结点(目的是让前面的结点指针域指向下下个结点),可以先使用查找函数找到位置,再进行删除。

测试:C语言实现单链表(超多配图,这下不得不学会单链表了)_第34张图片

 e195101c84744289a70bcb39f8165f78.png

C语言实现单链表(超多配图,这下不得不学会单链表了)_第35张图片

c337b97cbca84d6bb4f8580bd497db5c.png

(11)清空链表

思路:从第一个结点开始,设计一个pos指针,每次循环把头指针指向的结点地址赋给pos,让头指针指向下一个结点地址,调用free()释放pos指向的结点。

图解(以三个结点为例子):C语言实现单链表(超多配图,这下不得不学会单链表了)_第36张图片

 

代码和测试结果:

C语言实现单链表(超多配图,这下不得不学会单链表了)_第37张图片

C语言实现单链表(超多配图,这下不得不学会单链表了)_第38张图片

046004a7aa3d4b51a0a496c54b8014e4.png

(12)最终代码

SingleLinkedList.h

#pragma once
#include 
#include 
//#include     要使用断言的话注意包含头文件

//结构体数据类型重定义,方便我们更改要存储的元素类型
typedef int SLTDataType;

struct SListNode
{
	SLTDataType data;   //要存储的数据(数据域)
	struct SListNode* next; //用来存储下一个结构体的地址(指针域)
};

//打印
void SListPrint(struct SListNode* phead);
//创建一个新节点
struct SListNode* BuyListNode(SLTDataType x);
//尾部插入
void SListPushBack(struct SListNode** pphead, SLTDataType x);
//头部插入
void SListPushFront(struct SListNode** pphead, SLTDataType x);
//尾部删除
void SListPopBack(struct SListNode** pphead);
//头部删除
void SListPopFront(struct SListNode** pphead);
//查找,返回对应结点地址
//int SListFind(struct SListNode* phead, SLTDataType x);
struct SListNode* SListFind(struct SListNode* phead, SLTDataType x);
//指定插入(还有一种按输入位置来插入)(在前面插入)
void SListInsertF(struct SListNode** pphead, struct SListNode* pos, SLTDataType x);
void SListInsertB(struct SListNode** pphead, struct SListNode* pos, SLTDataType x);

//指定删除
void SListEarse(struct SListNode** pphead, struct SListNode* pos);
//销毁链表
void SListDestory(struct SListNode** pphead);

SingleLinkedList.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "SingleLinkedList.h"

//打印链表
void SListPrint(struct SListNode* phead)
{
	//一直循环,直到找到最后一个结点
	while (phead)
	{
		printf("%d-> ", phead->data); //依次打印结点存储的数据
		phead = phead->next; //让phead指向下一个结点
	}
	printf("NULL\n");
}

//生成新节点
struct SListNode* BuyListNode(SLTDataType x)
{
	//调用maoolc()函数生成一个结点
	struct SListNode* newNode = (struct SListNode*)malloc(sizeof(struct SListNode));
	//如果申请失败,打印错误并结束程序
	if (newNode == NULL)
	{
		printf("malloc error\n");
		exit(-1);
	}
	//将要插入的数据赋给新结点
	newNode->data = x;
	//新节点的next置空
	newNode->next = NULL;
	//返回生成的结点的地址
	return newNode;
}

//尾部插入
void SListPushBack(struct SListNode** pphead, SLTDataType x)
{
	//生成一个新的结点
	struct SListNode* newnode = BuyListNode(x);
	//如果链表为空,直接把新结点地址赋给*pphead
	if (*pphead == NULL)
	{
		*pphead = newnode;
	}
	else
	{	
		//设置一个指针tail用来找到尾部结点
		struct SListNode* tail = *pphead;
		//不断循环,直到找到尾部结点
		while (tail->next)
		{
			tail = tail->next;//指向下一个结点
		}
		//让原本置空的指针指向新生成的结点
		tail->next = newnode;
	}
}

//头部插入
void SListPushFront(struct SListNode** pphead, SLTDataType x)
{
	//生成新结点
	struct SListNode* newnode = BuyListNode(x);
	//保存原来第一个结点的地址
	struct SListNode* prev = *pphead;
	//让头指向新结点
	*pphead = newnode;
	newnode->next = prev;
}

//尾部删除
void SListPopBack(struct SListNode** pphead)
{
	//如果链表为空,就直接返回空,也可以使用assert(*pphead!=NULL)
	if (*pphead == NULL)
	{	
		return;
	}
	//如果只有一个结点
	if ((*pphead)->next == NULL)
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		//找尾部
		struct SListNode* tail = *pphead;
		//记录尾部的前一个结点的地址
		struct SListNode* prev = NULL;
		//找尾部结点,并保存尾部结点的前一个结点的地址
		while (tail->next)
		{
			prev = tail;
			tail = tail->next;
		}
		//找到尾部结点,释放
		free(tail);
		//置空
		tail = NULL;
		//把尾部的前一个结点保存的地址置空
		prev->next = NULL;
	}
}

//头部删除
void SListPopFront(struct SListNode** pphead)
{
	//如果链表为空,返回空,也可以使用assert(*pphead!=NULL)
	if (*pphead == NULL)
	{
		return;
	}
	else
	{
		//找到下一个结点的地址
		struct SListNode* prev = (*pphead)->next;
		//释放第一个结点
		free(*pphead);
		//头指针指向第二个结点
		*pphead = prev;
	}
}

//查找
struct SListNode* SListFind(struct SListNode* phead, SLTDataType x)
{
	struct SListNode* cur = phead;
	//循环查找
	while (cur)
	{
		//找到返回该结点地址
		if (cur->data == x)
		{
			return cur;
		}
		//没找到指向下一个结点
		else
		{
			cur = cur->next;
		}
	}
	//如果没找到,返回NULL
	return NULL;
}
//第二种
//int SListFind(struct SListNode* phead, SLTDataType x)
//{
//	//记录第几个结点
//	int i = 1;
//	struct SListNode* cur = phead;
//	//循环查找
//	while (cur)
//	{
//		//找到返回该结点地址
//		if (cur->data == x)
//		{
//			return i;
//		}
//		//没找到指向下一个结点,i加1
//		else
//		{
//			i = i + 1;
//			cur = cur->next;
//		}
//	}
//	//如果没找到,返回0
//	return 0;
//}


//指定结点前插入
void SListInsertF(struct SListNode**pphead,struct SListNode* pos,SLTDataType x)
{
	//生成一个新的结点
	struct SListNode* newnode = BuyListNode(x);
	//只有一个结点或者链表为空,进行头插
	if (*pphead == pos)
	{
		newnode->next = *pphead;
		*pphead= newnode;
	}
	else
	{
		//设计一个结构体指针来找pos的前一个结点
		struct SListNode* posprev = *pphead;
		while (posprev->next != pos)
		{
			posprev = posprev->next;
		}
		posprev->next = newnode;
		newnode->next = pos;	
	}
}
//指定结点后插入
void SListInsertB(struct SListNode**pphead,struct SListNode* pos,SLTDataType x)
{
	//生成一个新的结点
	struct SListNode* newnode = BuyListNode(x);
	//新结点指针域指向该结点的后一个
	newnode->next = pos->next;
	//结点的指针域指向新结点
	pos->next = newnode;
}

//指定位置删除
void SListEarse(struct SListNode** pphead, struct SListNode* pos)
{
	//如果链表为空,返回空,也可以使用assert(*pphead!=NULL)
	if (*pphead == NULL)
	{
		return;
	}
	//要删除的结点是第一个结点
	if (pos == *pphead)
	{
		//找到下一个结点的地址
		struct SListNode* prev = (*pphead)->next;
		//释放第一个结点
		free(*pphead);
		//头指针指向第二个结点
		*pphead= prev;
	}
	else
	{
		//要找到pos结点的前一个结点位置
		struct SListNode* posprev = *pphead;
		while (posprev->next != pos)
		{
			posprev = posprev->next;
		}
		//让posprev的指针域指向下下个结点
		posprev->next = pos->next;
		//释放结点pos的空间
		free(pos);
		pos= NULL;
	}	
}

//清空链表
void SListDestory(struct SListNode** pphead)
{
	struct SListNode* prev = *pphead;
	while ((*pphead)!= NULL)
	{
		//找到头指针指向的结点
		prev = *pphead;
		//让头指针指向下一个结点
		*pphead = (*pphead)->next;
		//释放前面的结点
		free(prev);
	}
}

text.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "SingleLinkedList.h"

void text1()
{
	struct SListNode* head = NULL;
	SListPushFront(&head, 5);
	SListPushFront(&head, 50);
	SListPushFront(&head, 50);
	SListPushFront(&head, 5);
	struct SListNode* pos = SListFind(head, 50);
	int i = 1;
	//查找多个相同的值
	while (pos)
	{
		printf("第%d个pos节点:%p->%d\n", i++, pos, pos->data);
		//pos指向目标结点的下一个结点
		pos = SListFind(pos->next, 50);
	}
	SListPrint(head);
	//修改
	pos = SListFind(head, 50);
	if (pos)
	{
		pos->data = 30;
	}
	SListPrint(head);
	
}

void text2()
{
	struct SListNode* head = NULL;
	//插入
	SListPushBack(&head, 2);
	SListPushBack(&head, 5);
	SListPushBack(&head, 15);
	//查找14位置
	struct SListNode* pos = SListFind(head, 14);
	//判断是否有14
	if (pos == NULL)
	{
		printf("没有该数据\n");
	}
	else
	{
		//删除14
		SListEarse(&head, pos);
	}
	SListPrint(head);
	//清空
	SListDestory(&head);
	//插入
	SListPushBack(&head, 2);
	SListPushBack(&head, 5);
	SListPrint(head);
}


int main()
{
	/*text1();*/
	text2();
	return 0;
}

五:小结

相较于顺序表,链表能够更好的利用零散的空间,并且插入数据不需要大量移动数据,但是单链表在物理层上不是连续存储的,我们只能前找后却无法后找前,而且一旦指针域的数据丢失我们就没法找到后续结点,后续的双向链表可以很好的解决这个问题。

顺序表讲解链接:http://t.csdn.cn/V96aI

你可能感兴趣的:(链表,数据结构,c语言,经验分享)