1.消息队列:
1.1消息队列的通信原理:
消息队列:
是消息的链接表,存放在内核中,一个消息队列由一个标识符(即队列ID)来标识
特点:
消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。
消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。
消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取
函数原型:
#include
// 创建或打开消息队列:成功返回队列ID,失败返回-1
int msgget(key_t key, int flag);
// 添加消息:成功返回0,失败返回-1
int msgsnd(int msqid, const void *ptr, size_t size, int flag);
// 读取消息:成功返回消息数据的长度,失败返回-1
int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
// 控制消息队列:成功返回0,失败返回-1
int msgctl(int msqid, int cmd, struct msqid_ds *buf);
#include
#include
#include
int msgget(key_t key, int msgflg);
如何创建一个消息队列:
A:创建队列,写数据
B:获取队列,读数据
在以下两种情况下,msgget将创建一个新的消息队列:
如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。(键值key:标识消息队列)
常用key参数为IPC_PRIVATE。(私有化)
函数msgrcv在读取消息队列时,type参数有下面几种情况:
type == 0,返回队列中的第一个消息;
type > 0,返回队列中消息类型为 type 的第一个消息;
type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。
可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。
1.2消息队列编程收发数据:
使用到的函数:
#include
#include
#include
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);
接收并回应:
参考代码:
#include
#include
#include
#include
#include
//int msgget(key_t key, int msgflg);
//int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
//ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);
struct msgbuf
{
long mtype;//必须大于0
char mtext[128];//内容
};
int main()
{
struct msgbuf readbuf;
key_t key;
key=ftok(".",23);//当前路径,id值随便‘Z’
printf("key=%x\n",key);
int msgid=msgget(0x1234,IPC_CREAT|0777);//创建队列,权限:可读可写可执行
if(msgid==-1)
{
printf("创建队列失败\n");
}
msgrcv(msgid,&readbuf,sizeof(readbuf.mtext),888,0);
printf("读取到:%s\n",readbuf.mtext);//读到的数据
struct msgbuf sendbuf={988,"fanhui de shuju"};//再返回
msgsnd(msgid,&sendbuf,strlen(sendbuf.mtext),0);
msgctl(msgid,IPC_RMID,NULL);
return 0;
}
发送并接收:
#include
#include
#include
#include
#include
//int msgget(key_t key, int msgflg);
//int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
//ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);
struct msgbuf
{
long mtype;//必须大于0
char mtext[128];//内容
};
int main()
{
struct msgbuf sendbuf={888,"laizi dazai xiaoxi"};
struct msgbuf readbuf;
key_t key;
key=ftok(".",23);//当前路径,id值随便‘Z’
printf("key=%x\n",key);
int msgid=msgget(0x1234,IPC_CREAT|0777);//创建队列,权限:可读可写可执行
if(msgid==-1)
{
printf("创建队列失败\n");
}
msgsnd(msgid,&sendbuf,strlen(sendbuf.mtext),0);//0:非阻塞方式发送
msgrcv(msgid,&readbuf,sizeof(readbuf.mtext),988,0);//接受返回的数据
printf("return from get:%s\n",readbuf.mtext);
msgctl(msgid,IPC_RMID,NULL);
return 0;
}
运行结果:
下面写了一个简单的使用消息队列进行IPC的例子:
服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。
msg_server.c:
#include
#include
#include
// 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd"
// 消息结构
struct msg_form {
long mtype;
char mtext[256];
};
int main()
{
int msqid;
key_t key;
struct msg_form msg;
// 获取key值
if((key = ftok(MSG_FILE,'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 打印key值
printf("Message Queue - Server key is: %d.\n", key);
// 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid());
// 循环读取消息
for(;;)
{
msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息
printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
printf("Server: receive msg.mtype is: %d.\n", msg.mtype);
msg.mtype = 999; // 客户端接收的消息类型
sprintf(msg.mtext, "hello, I'm server %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
}
return 0;
}
msg_client.c
#include
#include
#include
// 用于创建一个唯一的key
#define MSG_FILE "/etc/passwd"
// 消息结构
struct msg_form {
long mtype;
char mtext[256];
};
int main()
{
int msqid;
key_t key;
struct msg_form msg;
// 获取key值
if ((key = ftok(MSG_FILE, 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 打印key值
printf("Message Queue - Client key is: %d.\n", key);
// 打开消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid());
// 添加消息,类型为888
msg.mtype = 888;
sprintf(msg.mtext, "hello, I'm client %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
// 读取类型为777的消息
msgrcv(msqid, &msg, 256, 999, 0);
printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
return 0;
}
ftok:系统IPC键值的格式转化函数
系统建立IPC通讯(消息队列,信号量和共享内存)时,必须指定一个ID值,通常情况下,该ID通过ftok函数的到。去内核中找到相应的链表
函数原型:
#include
#include
key_t ftok(const char *pathname, int proj_id);
fname就是你指定的文件名(已经存在的文件名),一般使用当前目录,
id是子序号。虽然是int类型,但是只使用8bits(1-255)。
key_t key;key = ftok(".", 1); 这样就是将fname设为当前目录。
在一般的UNIX实现中,是将文件的索引节点号取出,前面加上子序号得到key_t的返回值。-----利用----ls -ai
如指定文件的索引节点号为65538,换算成16进制为0x010002,而你指定的ID值为38,换算成16进制为0x26,则最后的key_t返回值为0x26010002。
查询文件索引节点号的方法是: ls -i
--------------------通过key在内核找到链表(消息队列)没有创建
1.4.删除链表(消息队列):
函数原型:
#include
#include
#include
int msgctl(int msqid, int cmd, struct msqid_ds *buf);
关键字:IPC_STAT IPC_SET IPC_RMID IPC_INFO 。。。。
//
IPC_RMID:移除
2.共享内存:
2.1共享内存的概述:
进程间的通信(写纸条):
无名管道(单方向,写完被拿走),
命名管道(单方向,写完被拿走),
消息队列(双全工,写完不拿走),
共享内存(写在一个纸条上),
信号,信号量
共享内存:指两个或者多个进程共享一个给定的存储区
特点:
1.共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
2.因为多个进程可以同时操作,所以需要进行同步。
3.信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。
函数原型(共享内存的API):
#include
// 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
int shmget(key_t key, size_t size, int flag);
// 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
void *shmat(int shm_id, const void *addr, int flag);
// 断开与共享内存的连接:成功返回0,失败返回-1
int shmdt(void *addr);
// 控制共享内存的相关信息:成功返回0,失败返回-1
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
创建共享内存:
#include
#include
int shmget(key_t key, size_t size, int shmflg);
连接共享内存:
#include
#include
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);
断开连接:
#include
#include
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);
关闭共享内存:
#include
#include
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
说明:
1.当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。
2.当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。
3.shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。
4.shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。
演示代码:
写操作:
#include
#include
#include
#include
#include
#include
//int shmget(key_t key, size_t size, int shmflg);
int main()
{
int shmid;
char *shmaddr;
key_t key;
key=ftok(".",1);//获取键值--内核位置
shmid=shmget(key,1024*4,IPC_CREAT|0666);//共响内存以兆为单位,关键字:创造
if(shmid==-1)
{
printf("创建共响内存失败\n");
exit(-1);//通常设定,异常返回-1,正常返回0
}
// void *shmat(int shmid, const void *shmaddr, int shmflg);
shmaddr=shmat(shmid,0,0);//连接共响内存,shmflg:0:代表映射进来的共响内存可读可写,,完成共项内存的映射
printf("连接成功\n");
strcpy(shmaddr,"liujinhui");//写入内容
sleep(5);//写完后睡5s,让别的程序读走
//int shmdt(const void *shmaddr);
shmdt(shmaddr);//断开连接
//int shmctl(int shmid, int cmd, struct shmid_ds *buf);
shmctl(shmid,IPC_RMID,0);//关闭共响内存/删除
printf("退出\n");
return 0;
}
读操作:
#include
#include
#include
#include
#include
#include
//int shmget(key_t key, size_t size, int shmflg);
int main()
{
int shmid;
char *shmaddr;
key_t key;
key=ftok(".",1);//获取键值--内核位置
shmid=shmget(key,1024*4,0);//共响内存以兆为单位,关键字:不创造
if(shmid==-1)
{
printf("创建共响内存失败\n");
exit(-1);//通常设定,异常返回-1,正常返回0
}
// void *shmat(int shmid, const void *shmaddr, int shmflg);
shmaddr=shmat(shmid,0,0);//连接共响内存,shmflg:0:代表映射进来的共响内存可读可写,,完成共项内存的映射
printf("连接成功\n");
printf("data:%s\n",shmaddr);//读出内容
//int shmdt(const void *shmaddr);
shmdt(shmaddr);//断开连接
printf("退出\n");
return 0;
}
运行结果:
//如何查看操作系统中有哪些共享内存:
ipcs -m
//删除共享内存:
ipcrm -m 884736
要求:明白共享内存原理,会使用共享内存api
3.信号
3.1信号概述:
对于linux来说,信号是软中断,许多重要的程序都需要处理信号,信号为linux提供了一种处理异步时间的方法,
比如:终端用户输入ctrl+c来终端程序,会通过信号机制停止一个程序
3.2信号的名字和编号:
每个信号都有名字和编号,这些名字都以SIG开头,例如:SIGIO,SIGCHLD等等
信号定义在signal.h文件中,信号名都定义为正整数具体信号可以使用“kill -l”查询信号的名字以及序号,信号是从1开始编号的,不存在0号信号,kill对信号0有特殊的应用
kill -l
Linux信号的编号是从1-64,其中32和33空缺,没有对应的信号。通过kill -l 可查看所有的信号。
其中:
1~31之间的信号叫做不可靠信号, 不支持排队, 信号可能会丢失, 也叫做非实时信号。
34~64之间的信号叫做可靠信号, 支持排队, 信号不会丢失, 也叫做实时信号。
3.3信号的处理:
信号的处理有3种方法:忽略,捕捉和默认动作
忽略信号:大多数信号可以使用这种方式来处理,但是有两者信号不能被忽略(SIGKILL SIGTOP),因为向内核和超级用户提供了进程终止和停止的可靠方法,如果忽略了,那么这个进程就变成没人管理的进程。
捕捉信号:需要告诉内核,用户希望如何处理某一信号,说白了就是写一个信号处理函数,然后将这个函数告诉内核,当该信号产生时,由内核来调用用户自定义的函数,以此来实现某种信号机制。
系统默认信号:对于每个信号来说,系统都对应有默认的处理动作,当发生了该信号,系统会自动执行,不过,对系统来说,大部分处理方式都比较粗暴,就是直接杀死该进程
具体信号默认动作可以使用 man 7 signal 来查看系统的具体定义。
3.4.如何使用这些信号:
Kill:就是一个发送信号的工具
比如:
./a.out(产生进程)
----ps -aux|grep a.out(查看进程id)
----kill -9 4222(杀死该进程)
通过查看编号的名称,可以发现9---SIGKILL,正是杀死该进程
对于信号来说,最大的意义并不是杀死进程,
而是实现一些异步通信的手段-----捕捉信号(信号处理函数)
那么如何来自定义信号的处理函数呢?
信号处理函数的注册:
信号处理函数的注册不只一种方法,分为入门版和高级版
入门版:函数signal
高级版:函数sigaction (先不讲)
信号注册函数——入门版:
可以发送的信号类型是多种多样的,每种信号的处理可能不一定相同,那么,我们肯定需要知道到底发生了什么信号。
另外,虽然我们知道了系统发出来的是哪种信号,但是还有一点也很重要,就是系统产生了一个信号,是由谁来响应?
如果系统通过 ctrl+c 产生了一个 SIGINT(中断信号),显然不是所有程序同时结束,那么,信号一定需要有一个接收者。对于处理信号的程序来说,接收者就是自己。
signal 的函数原型:
#include
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);
根据函数原型可以看出由两部分组成,一个是真实处理信号的函数,另一个是注册函数了。
对于sighandler_t signal(int signum, sighandler_t handler);函数来说,signum 显然是信号的编号,handler 是中断函数的指针。
同样,typedef void (*sighandler_t)(int);中断函数的原型中,有一个参数是 int 类型,显然也是信号产生的类型,方便使用一个函数来处理多个信号。我们先来看看简单一个信号注册的代码示例吧。
演示代码:signal.c
#include
#include
#include
//typedef void (*sighandler_t)(int);
void handler(int signum)
{
if(signum == SIGIO)
printf("SIGIO signal: %d\n", signum);
else if(signum == SIGUSR1)
printf("SIGUSR1 signal: %d\n", signum);
else
printf("error\n");
}
int main(void)
{
//sighandler_t signal(int signum, sighandler_t handler);
signal(SIGIO, handler);
signal(SIGUSR1, handler);
printf("%d %d\n", SIGIO, SIGUSR1);
for(;;)
{
sleep(10000);
}
return 0;
}
我们先使用 kill 命令发送信号给之前所写的程序,关于这个命令,我们后面再谈。
运行结果:
通过kill发送信号:
程序接收到的信号处理结果:
简单的总结一下,我们通过 signal 函数注册一个信号处理函数,分别注册了两个信号(SIGIO 和 SIGUSER1);随后主程序就一直“长眠”了。
通过 kill 命令发送信号之前,我们需要先查看到接收者,通过 ps 命令查看了之前所写的程序的 PID,通过 kill 函数来发送。
对于已注册的信号,使用 kill 发送都可以正常接收到,但是如果发送了未注册的信号,则会使得应用程序终止进程。
那么,已经可以设置信号处理函数了,信号的处理还有两种状态,分别是默认处理和忽略,这两种设置很简单,只需要将 handler 设置为 SIG_IGN(忽略信号)或 SIG_DFL(默认动作)即可。
在此还有两个问题需要说明一下:
1.当执行一个程序时,所有信号的状态都是系统默认或者忽略状态的。除非是 调用exec进程忽略了某些信号。exec 函数将原先设置为要捕捉的信号都更改为默认动作,其他信号的状态则不会改变 。
2.当一个进程调动了 fork 函数,那么子进程会继承父进程的信号处理方式。
入门版的信号注册还是比较简单的,只需要一句注册和一个处理函数即可,那么,接下来看看,如何发送信号吧。
信号发送函数——入门版
kill 的函数原型:
#include
#include
int kill(pid_t pid, int sig);
正如我之前所说的,信号的处理需要有接受者,显然发送者必须要知道发给谁,根据 kill 函数的原型可以看到,pid 就是接受者的 pid,sig 则是发送的信号的类型。从原型来看,发送信号要比接受信号还要简单些,那么我们直接上代码吧~~!
演示代码:kill.c
#include
#include
#include
#include
#include
int main(int argc, char** argv)
{
if(3 != argc)
{
printf("[Arguments ERROR!]\n");
printf("\tUsage:\n");
printf("\t\t%s \n" , argv[0]);
return -1;
}
int pid = atoi(argv[1]);
int sig = atoi(argv[2]);
//int kill(pid_t pid, int sig);
if(pid > 0 && sig > 0)
{
kill(pid, sig);
}
else
{
printf("Target_PID or Signal_Number MUST bigger than 0!\n");
}
return 0;
}
运行结果:
根据以上的结果可看到,基本可以实现了信号的发送,虽然不能直接发送信号名称,但是通过信号的编号,可以正常的给程序发送信号了,也是初步实现了信号的发送流程。
关于 kill 函数,还有一点需要额外说明,上面的程序限定了 pid 必须为大于0的正整数,其实 kill 函数传入的 pid 可以是小于等于0的整数。
pid > 0:将发送个该 pid 的进程
pid == 0:将会把信号发送给与发送进程属于同一进程组的所有进程,并且发送进程具有权限想这些进程发送信号。
pid < 0:将信号发送给进程组ID 为 pid 的绝对值得,并且发送进程具有权限向其发送信号的所有进程
pid == -1:将该信号发送给发送进程的有权限向他发送信号的所有进程。(不包括系统进程集中的进程)
信号注册函数——高级版:
我们已经成功完成了信号的收发,那么为什么会有高级版出现呢?其实之前的信号存在一个问题就是,虽然发送和接收到了信号,可是总感觉少些什么,既然都已经把信号发送过去了,为何不能再携带一些数据呢?
正是如此,我们需要另外的函数来通过信号传递的过程中,携带一些数据。咱么先来看看发送的函数吧。
sigaction 的函数原型:
#include
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
struct sigaction {
void (*sa_handler)(int); //信号处理程序,不接受额外数据,SIG_IGN 为忽略,SIG_DFL 为默认动作
void (*sa_sigaction)(int, siginfo_t *, void *); //信号处理程序,能够接受额外数据和sigqueue配合使用
sigset_t sa_mask;//阻塞关键字的信号集,可以再调用捕捉函数之前,把信号添加到信号阻塞字,信号捕捉函数返回之前恢复为原先的值。
int sa_flags;//影响信号的行为SA_SIGINFO表示能够接受数据
};
//回调函数句柄sa_handler、sa_sigaction只能任选其一
这个函数的原版帮助信息,可以通过man sigaction来查看。
关于void (*sa_sigaction)(int, siginfo_t *, void );处理函数来说还需要有一些说明。void 是接收到信号所携带的额外数据;而struct siginfo这个结构体主要适用于记录接收信号的一些相关信息。
siginfo_t {
int si_signo; /* Signal number */
int si_errno; /* An errno value */
int si_code; /* Signal code */
int si_trapno; /* Trap number that caused
hardware-generated signal
(unused on most architectures) */
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
int si_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
sigval_t si_value; /* Signal value */
int si_int; /* POSIX.1b signal */
void *si_ptr; /* POSIX.1b signal */
int si_overrun; /* Timer overrun count; POSIX.1b timers */
int si_timerid; /* Timer ID; POSIX.1b timers */
void *si_addr; /* Memory location which caused fault */
int si_band; /* Band event */
int si_fd; /* File descriptor */
}
其中的成员很多,==si_signo 和 si_code ==是必须实现的两个成员。可以通过这个结构体获取到信号的相关信息。
关于发送过来的数据是存在两个地方的,sigval_t si_value这个成员中有保存了发送过来的信息;同时,在si_int或者si_ptr成员中也保存了对应的数据。
那么,kill 函数发送的信号是无法携带数据的,我们现在还无法验证发送收的部分,那么,我们先来看看发送信号的高级用法后,我们再来看看如何通过信号来携带数据吧。
信号发送函数——高级版:
使用这个函数之前,必须要有几个操作需要完成:
1.使用 sigaction 函数安装信号处理程序时,制定了 SA_SIGINFO 的标志。
2.sigaction 结构体中的 sa_sigaction 成员提供了信号捕捉函数。如果实现的时 sa_handler 成员,那么将无法获取额外携带的数据。
sigqueue 函数只能把信号发送给单个进程,可以使用 value 参数向信号处理程序传递整数值或者指针值。
sigqueue 函数不但可以发送额外的数据,还可以让信号进行排队,对于设置了阻塞的信号,使用 sigqueue 发送多个同一信号,在解除阻塞时,接受者会接收到发送的信号队列中的信号,而不是直接收到一次。
但是,信号不能无限的排队,信号排队的最大值受到SIGQUEUE_MAX的限制,达到最大限制后,sigqueue 会失败,errno 会被设置为 EAGAIN。
那么我们来尝试一下,发送一个携带有额外数据的信号吧。
接收端代码:
#include
#include
#include
//void (*sa_sigaction)(int, siginfo_t *, void *);
void handler(int signum, siginfo_t * info, void * context)
{
if(signum == SIGIO)
printf("SIGIO signal: %d\n", signum);
else if(signum == SIGUSR1)
printf("SIGUSR1 signal: %d\n", signum);
else
printf("error\n");
if(context)
{
printf("content: %d\n", info->si_int);
printf("content: %d\n", info->si_value.sival_int);
}
}
int main(void)
{
//int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
struct sigaction act;
/*
struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
};
*/
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGIO, &act, NULL);
sigaction(SIGUSR1, &act, NULL);
for(;;)
{
sleep(10000);
}
return 0;
}
发送端代码:
#include
#include
#include
#include
int main(int argc, char** argv)
{
if(4 != argc)
{
printf("[Arguments ERROR!]\n");
printf("\tUsage:\n");
printf("\t\t%s \n" , argv[0]);
return -1;
}
int pid = atoi(argv[1]);
int sig = atoi(argv[2]);
if(pid > 0 && sig > 0)
{
//int sigqueue(pid_t pid, int sig, const union sigval value);
union sigval val;
val.sival_int = atoi(argv[3]);
printf("send: %d\n", atoi(argv[3]));
sigqueue(pid, sig, val);
}
else
{
printf("Target_PID or Signal_Number MUST bigger than 0!\n");
}
return 0;
}
4.信号量:
4.1.信号量概述:
**信号量(semaphore):**与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
信号量生活场景:
去一个房间里嫖娼,一把钥匙(信号量),房间(临界资源)
临界资源:一次只允许一个进程(人)使用的资源
特点:对共享内存(美少女)进行上锁,信号量是钥匙
同步和互斥:
补充:
同步:
是指在不同任务之间的若干个程序片段,他们的运行必须
严格按照规定的某种顺序来运行,这种顺序依赖于要完成任
务的特点
场景:多个进程在运行时需要协同步调,按预定的顺序
执行,比如A任务依赖B任务产生的数据
互斥:
场景:一个公共资源同时只能被一个进程使用
信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。P操作:拿锁 v操作:放回锁
每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
支持信号量组。
4.2. 信号量编程实现:
最简单的信号量是只能取0和1的变量,这也是信号量最常见的一种形式,叫做二值信号量,而可以取多个正整数的信号量,叫做通用信号量
Linux下的信号量函数,都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。
函数原型:
#include
// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
int semget(key_t key, int num_sems, int sem_flags);
// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
int semop(int semid, struct sembuf semoparray[], size_t numops);
// 控制信号量的相关信息
int semctl(int semid, int sem_num, int cmd, ...);
当semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。
在semop函数中,sembuf结构的定义如下:
struct sembuf
{
short sem_num; // 信号量组中对应的序号,0~sem_nums-1
short sem_op; // 信号量值在一次操作中的改变量
short sem_flg; // IPC_NOWAIT, SEM_UNDO
}
其中 sem_op 是一次操作中的信号量的改变量:
若sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。
若sem_op < 0,请求 sem_op 的绝对值的资源。
如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
当相应的资源数不能满足请求时,这个操作与sem_flg有关。
sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN。
sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
此信号量被删除,函数smeop出错返回EIDRM;
进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
若sem_op == 0,进程阻塞直到信号量的相应值为0:
当信号量已经为0,函数立即返回。
如果信号量的值不为0,则依据sem_flg决定函数动作:
sem_flg指定IPC_NOWAIT,则出错返回EAGAIN。
sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
此信号量被删除,函数smeop出错返回EIDRM;
进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
在semctl函数中的命令有多种,这里就说两个常用的:
SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。
演示代码:
#include
#include
#include
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, 0, SETVAL, tmp) == -1)
{
perror("Init Semaphore Error");
return -1;
}
return 0;
}
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
// 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
{
perror("Delete Semaphore Error");
return -1;
}
return 0;
}
int main()
{
int sem_id; // 信号量集ID
key_t key;
pid_t pid;
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 创建信号量集,其中只有一个信号量
if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
{
perror("semget error");
exit(1);
}
// 初始化:初值设为0资源被占用
init_sem(sem_id, 0);
if((pid = fork()) == -1)
perror("Fork Error");
else if(pid == 0) /*子进程*/
{
sleep(2);
printf("Process child: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
}
else /*父进程*/
{
sem_p(sem_id); /*等待资源*/
printf("Process father: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
del_sem(sem_id); /*删除信号量集*/
}
return 0;
}
上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。
总:进程通信综合实例:
下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。
共享内存用来传递数据;
信号量用来同步;
消息队列用来 在客户端修改了共享内存后 通知服务器读取。
演示代码:
server.c
#include
#include
#include // shared memory
#include // semaphore
#include // message queue
#include // memcpy
// 消息队列结构
struct msg_form {
long mtype;
char mtext;
};
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, 0, SETVAL, tmp) == -1)
{
perror("Init Semaphore Error");
return -1;
}
return 0;
}
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
// 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
{
perror("Delete Semaphore Error");
return -1;
}
return 0;
}
// 创建一个信号量集
int creat_sem(key_t key)
{
int sem_id;
if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
{
perror("semget error");
exit(-1);
}
init_sem(sem_id, 1); /*初值设为1资源未占用*/
return sem_id;
}
int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
char data[] = "this is server";
struct shmid_ds buf1; /*用于删除共享内存*/
struct msqid_ds buf2; /*用于删除消息队列*/
struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 创建共享内存
if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)
{
perror("Create Shared Memory Error");
exit(1);
}
// 连接共享内存
shm = (char*)shmat(shmid, 0, 0);
if((int)shm == -1)
{
perror("Attach Shared Memory Error");
exit(1);
}
// 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 创建信号量
semid = creat_sem(key);
// 读数据
while(1)
{
msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/
if(msg.mtext == 'q') /*quit - 跳出循环*/
break;
if(msg.mtext == 'r') /*read - 读共享内存*/
{
sem_p(semid);
printf("%s\n",shm);
sem_v(semid);
}
}
// 断开连接
shmdt(shm);
/*删除共享内存、消息队列、信号量*/
shmctl(shmid, IPC_RMID, &buf1);
msgctl(msqid, IPC_RMID, &buf2);
del_sem(semid);
return 0;
}
client.c
#include
#include
#include // shared memory
#include // semaphore
#include // message queue
#include // memcpy
// 消息队列结构
struct msg_form {
long mtype;
char mtext;
};
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
struct msg_form msg;
int flag = 1; /*while循环条件*/
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 获取共享内存
if((shmid = shmget(key, 1024, 0)) == -1)
{
perror("shmget error");
exit(1);
}
// 连接共享内存
shm = (char*)shmat(shmid, 0, 0);
if((int)shm == -1)
{
perror("Attach Shared Memory Error");
exit(1);
}
// 创建消息队列
if ((msqid = msgget(key, 0)) == -1)
{
perror("msgget error");
exit(1);
}
// 获取信号量
if((semid = semget(key, 0, 0)) == -1)
{
perror("semget error");
exit(1);
}
// 写数据
printf("***************************************\n");
printf("* IPC *\n");
printf("* Input r to send data to server. *\n");
printf("* Input q to quit. *\n");
printf("***************************************\n");
while(flag)
{
char c;
printf("Please input command: ");
scanf("%c", &c);
switch(c)
{
case 'r':
printf("Data to send: ");
sem_p(semid); /*访问资源*/
scanf("%s", shm);
sem_v(semid); /*释放资源*/
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
msg.mtype = 888;
msg.mtext = 'r'; /*发送消息通知服务器读数据*/
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
break;
case 'q':
msg.mtype = 888;
msg.mtext = 'q';
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
flag = 0;
break;
default:
printf("Wrong input!\n");
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
}
}
// 断开连接
shmdt(shm);
return 0;
}
注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:
while((c=getchar())!='\n' && c!=EOF);
运行结果: